A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface
Abstract
:1. Introduction
2. Micromixer Structure and Simulation for Mixing Performance
2.1. Electric Field
2.2. Flow Field
2.3. Concentration Field
3. Results and Discussion
3.1. Flow Field and Concentration Field in the Microchannel
3.2. Effect of the Zeta Potential Ratio of the Janus Droplet’s Surface on Mixing Efficiency
3.3. Impact of Zeta Potential Distribution along Janus Droplet Surface
3.4. Influence of Microchannel Dimensions on Mixing Performance
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vaghef-Koodehi, A.; Ernst, O.D.; Lapizco-Encinas, B.H. Separation of Cells and Microparticles in Insulator-Based Electrokinetic Systems. Anal. Chem. 2023, 95, 1409–1418. [Google Scholar] [CrossRef]
- Sheen, H.-J.; Panigrahi, B.; Kuo, T.-R.; Hsu, W.-C.; Chung, P.-S.; Xie, Q.-Z.; Lin, C.-Y.; Chang, Y.-S.; Lin, C.-T.; Fan, Y.-J. Electrochemical Biosensor with Electrokinetics-Assisted Molecular Trapping for Enhancing C-Reactive Protein Detection. Biosens. Bioelectron. 2022, 210, 114338. [Google Scholar] [CrossRef]
- Gharib, G.; Bütün, İ.; Muganlı, Z.; Kozalak, G.; Namlı, İ.; Sarraf, S.S.; Ahmadi, V.E.; Toyran, E.; van Wijnen, A.J.; Koşar, A. Biomedical Applications of Microfluidic Devices: A Review. Biosensors 2022, 12, 1023. [Google Scholar] [CrossRef]
- Zhou, J.; Tao, Y.; Liu, W.; Sun, H.; Wu, W.; Song, C.; Xue, R.; Jiang, T.; Jiang, H.; Ren, Y. Self-Powered AC Electrokinetic Microfluidic System Based on Triboelectric Nanogenerator. Nano Energy 2021, 89, 106451. [Google Scholar] [CrossRef]
- Liu, W.; Tao, Y.; Xue, R.; Song, C.; Wu, Q.; Ren, Y. Continuous-Flow Nanoparticle Trapping Driven by Hybrid Electrokinetics in Microfluidics. Electrophoresis 2021, 42, 939–949. [Google Scholar] [CrossRef]
- Cardenas-Benitez, B.; Jind, B.; Gallo-Villanueva, R.C.; Martinez-Chapa, S.O.; Lapizco-Encinas, B.H.; Perez-Gonzalez, V.H. Direct Current Electrokinetic Particle Trapping in Insulator-Based Microfluidics: Theory and Experiments. Anal. Chem. 2020, 92, 12871–12879. [Google Scholar] [CrossRef]
- Cai, S.; Jin, Y.; Lin, Y.; He, Y.; Zhang, P.; Ge, Z.; Yang, W. Micromixing within Microfluidic Devices: Fundamentals, Design, and Fabrication. Biomicrofluidics 2023, 17, 061503. [Google Scholar] [CrossRef]
- Saravanakumar, S.M.; Cicek, P.V. Microfluidic Mixing: A Physics-Oriented Review. Micromachines 2023, 14, 1827. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Z.; Wang, B.; Cai, Y.; Song, Q. An Overview on State-of-Art of Micromixer Designs, Characteristics and Applications. Anal. Chim. Acta 2023, 1279, 341685. [Google Scholar] [CrossRef]
- Bayareh, M.; Ashani, M.N.; Usefian, A. Active and Passive Micromixers: A Comprehensive Review. Chem. Eng. Process. Process Intensif. 2020, 147, 107771. [Google Scholar] [CrossRef]
- Cai, G.; Li, X.; Zhang, H.; Lin, J. A Review on Micromixers. Micromachines 2017, 8, 274. [Google Scholar] [CrossRef]
- Raza, W.; Kim, K. Asymmetrical Split-and-Recombine Micromixer with Baffles. Micromachines 2019, 10, 844. [Google Scholar] [CrossRef]
- Enders, A.; Siller, I.G.; Urmann, K.; Hoffmann, M.R.; Bahnemann, J. 3D Printed Microfluidic Mixers—A Comparative Study on Mixing Unit Performances. Small 2019, 15, 1804326. [Google Scholar] [CrossRef]
- Raza, W.; Kim, K.-Y. Unbalanced Split and Recombine Micromixer with Three-Dimensional Steps. Ind. Eng. Chem. Res. 2019, 59, 3744–3756. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Z. Numerical Investigation on Layout Optimization of Obstacles in a Three-Dimensional Passive Micromixer. Anal. Chim. Acta 2017, 964, 142–149. [Google Scholar] [CrossRef]
- Wang, L.; Ma, S.; Wang, X.; Bi, H.; Han, X. Mixing Enhancement of a Passive Microfluidic Mixer Containing Triangle Baffles. Asia-Pac. J. Chem. Eng. 2014, 9, 877–885. [Google Scholar] [CrossRef]
- Stroock, A.D.; Dertinger, S.K.W.; Ajdari, A.; Mezić, I.; Stone, H.A.; Whitesides, G.M. Chaotic Mixer for Microchannels. Science 2002, 295, 647–651. [Google Scholar] [CrossRef]
- Howell, P.B.; Mott, D.R.; Fertig, S.; Kaplan, C.R.; Golden, J.P.; Oran, E.S.; Ligler, F.S. A Microfluidic Mixer with Grooves Placed on the Top and Bottom of the Channel. Lab Chip 2005, 5, 524–530. [Google Scholar] [CrossRef]
- Hossain, S.; Husain, A.; Kim, K.-Y. Optimization of Micromixer with Staggered Herringbone Grooves on Top and Bottom Walls. Eng. Appl. Comput. Fluid Mech. 2011, 5, 506–516. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, T.; Liu, Z.; Wu, Y.; Qian, S.; Korvink, J.G. Topology Optimization of Electrode Patterns for Electroosmotic Micromixer. Int. J. Heat Mass Transf. 2018, 126, 1299–1315. [Google Scholar] [CrossRef]
- Rashidi, S.; Bafekr, H.; Valipour, M.S.; Esfahani, J.A. A Review on the Application, Simulation, and Experiment of the Electrokinetic Mixers. Chem. Eng. Process. Process Intensif. 2018, 126, 108–122. [Google Scholar] [CrossRef]
- Zhou, T.; Wang, H.; Shi, L.; Liu, Z.; Joo, S.W. An Enhanced Electroosmotic Micromixer with an Efficient Asymmetric Lateral Structure. Micromachines 2016, 7, 218. [Google Scholar] [CrossRef]
- Chen, Y.; Kim, C.N. Numerical Analysis of the Mixing of Two Electrolyte Solutions in an Electromagnetic Rectangular Micromixer. J. Ind. Eng. Chem. 2018, 60, 377–389. [Google Scholar] [CrossRef]
- Dallakehnejad, M.; Mirbozorgi, S.A.; Niazmand, H. A Numerical Investigation of Magnetic Mixing in Electroosmotic Flows. J. Electrostat. 2019, 100, 103354. [Google Scholar] [CrossRef]
- Chen, Z.; Shen, L.; Zhao, X.; Chen, H.; Xiao, Y.; Zhang, Y.; Yang, X.; Zhang, J.; Wei, J.; Hao, N. Acoustofluidic Micromixers: From Rational Design to Lab-on-a-Chip Applications. Appl. Mater. Today 2022, 26, 101356. [Google Scholar] [CrossRef]
- Rasouli, M.R.; Tabrizian, M. An Ultra-Rapid Acoustic Micromixer for Synthesis of Organic Nanoparticles. Lab Chip 2019, 19, 3316–3325. [Google Scholar] [CrossRef]
- Shang, X.; Huang, X.; Yang, C. Vortex Generation and Control in a Microfluidic Chamber with Actuations. Phys. Fluids 2016, 28, 122001. [Google Scholar] [CrossRef]
- Huo, X.; Chen, X. A Review on Modeling, Simulation and Experiment of Electrokinetic Micromixers. J. Dispers. Sci. Technol. 2021, 42, 1469–1481. [Google Scholar] [CrossRef]
- Wu, Z.; Li, D. Micromixing Using Induced-Charge Electrokinetic Flow. Electrochim. Acta 2008, 53, 5827–5835. [Google Scholar] [CrossRef]
- Wu, Z.; Li, D. Mixing and Flow Regulating by Induced-Charge Electrokinetic Flow in a Microchannel with a Pair of Conducting Triangle Hurdles. Microfluid. Nanofluid 2008, 5, 65–76. [Google Scholar] [CrossRef]
- Fosdick, S.E.; Knust, K.N.; Scida, K.; Crooks, R.M. Bipolar Electrochemistry. Angew. Chemie Int. Ed. 2013, 52, 10438–10456. [Google Scholar] [CrossRef]
- Erickson, D.; Li, D. Influence of Surface Heterogeneity on Electrokinetically Driven Microfluidic Mixing. Langmuir 2002, 18, 1883–1892. [Google Scholar] [CrossRef]
- Biddiss, E.; Erickson, D.; Li, D. Heterogeneous Surface Charge Enhanced Micromixing for Electrokinetic Flows. Anal. Chem. 2004, 76, 3208–3213. [Google Scholar] [CrossRef]
- Song, Y.; Wang, C.; Li, J.; Li, D. Vortex Generation in Electroosmotic Flow in a Straight Polydimethylsiloxane Microchannel with Different Polybrene Modified-to-Unmodified Section Length Ratios. Microfluid. Nanofluid. 2019, 23, 24. [Google Scholar] [CrossRef]
- Wang, C.; Song, Y.; Pan, X. Electrokinetic-Vortex Formation near a Two-Part Cylinder with Same-Sign Zeta Potentials in a Straight Microchannel. Electrophoresis 2020, 41, 793–801. [Google Scholar] [CrossRef]
- Wang, C. Liquid Mixing Based on Electrokinetic Vortices Generated in a T-Type Microchannel. Micromachines 2021, 12, 130. [Google Scholar] [CrossRef]
- Zhao, C.X. Multiphase Flow Microfluidics for the Production of Single or Multiple Emulsions for Drug Delivery. Adv. Drug Deliv. Rev. 2013, 65, 1420–1446. [Google Scholar] [CrossRef]
- Khan, I.U.; Serra, C.A.; Anton, N.; Li, X.; Akasov, R.; Messaddeq, N.; Kraus, I.; Vandamme, T.F. Microfluidic Conceived Drug Loaded Janus Particles in Side-by-Side Capillaries Device. Int. J. Pharm. 2014, 473, 239–249. [Google Scholar] [CrossRef]
- Lan, J.; Chen, J.; Li, N.; Ji, X.; Yu, M.; He, Z. Microfluidic Generation of Magnetic-Fluorescent Janus Microparticles for Biomolecular Detection. Talanta 2016, 151, 126–131. [Google Scholar] [CrossRef]
- Aveyard, R.; Binks, B.P.; Clint, J.H. Emulsions Stabilised Solely by Colloidal Particles. Adv. Colloid Interface Sci. 2003, 100-102, 503–546. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Q. 3D Numerical Study of the Electrokinetic Motion of a Microparticle Adsorbed at a Horizontal Oil/Water Interface in an Infinite Domain. ACS Omega 2022, 7, 4062–4070. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Song, Y.; Pan, X.; Li, D. Electrokinetic Motion of a Spherical Micro Particle at an Oil−water Interface in Microchannel. Electrophoresis 2018, 39, 807–815. [Google Scholar] [CrossRef]
- Li, M.; Li, D. Fabrication and Electrokinetic Motion of Electrically Anisotropic Janus Droplets in Microchannels. Electrophoresis 2017, 38, 287–295. [Google Scholar] [CrossRef]
- Gu, Y. Drop Size Dependence of Contact Angles of Oil Drops on a Solid Surface in Water. Colloids Surf. A Physicochem. Eng. Asp. 2001, 181, 215–224. [Google Scholar] [CrossRef]
- Yuling, L.; Yingying, W.; Shipeng, W.; Limin, H.; Tianxu, Y. Experimental and Theoretical Investigation of the Spreading Behaviors of Oil Droplets on the Surfaces with Different Wettabilities. Colloids Surf. A Physicochem. Eng. Asp. 2021, 620, 126467. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potential in Colloid Science: Principles and Applications; Academic Press: London, UK, 1981. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; He, Y. A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface. Micromachines 2024, 15, 91. https://doi.org/10.3390/mi15010091
Wang C, He Y. A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface. Micromachines. 2024; 15(1):91. https://doi.org/10.3390/mi15010091
Chicago/Turabian StyleWang, Chengfa, and Yehui He. 2024. "A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface" Micromachines 15, no. 1: 91. https://doi.org/10.3390/mi15010091
APA StyleWang, C., & He, Y. (2024). A Novel Micromixer That Exploits Electrokinetic Vortices Generated on a Janus Droplet Surface. Micromachines, 15(1), 91. https://doi.org/10.3390/mi15010091