Impact of Total Ionizing Dose on Radio Frequency Performance of 22 nm Fully Depleted Silicon-On-Insulator nMOSFETs
Abstract
:1. Introduction
2. Simulation Settings
2.1. Device Structure
2.2. Simulation Mechanism and Method
3. Results and Discussion
3.1. Influence of TID Effect on the DC Characteristics
3.2. Influence of TID Effect on the RF Characteristics
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, K.; Khakifirooz, A. Fully depleted SOI (FDSOI) technology. Sci. China Inf. Sci. 2016, 59, 061402. [Google Scholar] [CrossRef]
- Dodd, P.E.; Shaneyfelt, A.R.; Horn, K.M.; Walsh, D.S.; Hash, G.L.; Hill, T.A.; Winokur, P.S. SEU-sensitive volumes in bulk and SOI SRAMs from first-principles calculations and experiments. IEEE Trans. Nucl. Sci. 2001, 48, 1893–1903. [Google Scholar] [CrossRef]
- Bi, J.; Reed, R.A.; Schrimpf, R.D.; Fleetwood, D.M.; Han, Z. Neutron-induced single-event-transient effects in ultrathin-body fully-depleted silicon-on-insulator MOSFETs. In Proceedings of the 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 14–18 April 2013; pp. SE. 2.1–SE. 2.5. [Google Scholar]
- Choi, W.; Jung, G.; Kim, J.; Kwon, Y. Scalable small-signal modeling of RF CMOS FET based on 3-D EM-based extraction of parasitic effects and its application to millimeter-wave amplifier design. IEEE Trans. Microw. Theory Tech. 2009, 57, 3345–3353. [Google Scholar] [CrossRef]
- Vandooren, A.; Thean, A.V.Y.; Du, Y.; Hughes, J.; Stephens, T.; Huang, M.; Mogab, J. Mixed-signal performance of sub-100 nm fully-depleted SOI devices with metal gate, high K (HfO/sub 2/) dielectric and elevated source/drain extensions. In Proceedings of the IEEE International Electron Devices Meeting 2003, Washington, DC, USA, 8–10 December 2003; pp. 11.5. 1–11.5. 3. [Google Scholar]
- Schwank, J.R.; Shaneyfelt, M.R.; Fleetwood, D.M.; Felix, J.A.; Dodd, P.E.; Paillet, P.; Ferlet-Cavrois, V. Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 2008, 55, 1833–1853. [Google Scholar] [CrossRef]
- Fleetwood, D.M. Total-ionizing-dose effects, border traps, and 1/f noise in emerging MOS technologies. IEEE Trans. Nucl. Sci. 2020, 67, 1216–1240. [Google Scholar] [CrossRef]
- Gaillardin, M.; Martinez, M.; Paillet, P.; Raine, M.; Andrieu, F.; Faynot, O.; Thomas, O. Total ionizing dose effects mitigation strategy for nanoscaled FDSOI technologies. IEEE Trans. Nucl. Sci. 2014, 61, 3023–3029. [Google Scholar] [CrossRef]
- Lee, C.; Lee, S. Improved RF Modeling of Intrinsic Output Equivalent Circuit for HR PD-SOI MOSFETs. In Proceedings of the 2018 IEEE International Meeting for Future of Electron Devices, Kansai (IMFEDK), Kyoto, Japan, 21–22 June 2018; pp. 1–2. [Google Scholar]
- Xie, T.; Ge, H.; Lv, Y.; Chen, J. The impact of total ionizing dose on RF performance of 130 nm PD SOI I/O nMOSFETs. Microelectron. Reliab. 2021, 116, 114001. [Google Scholar] [CrossRef]
- Arora, R.; Zhang, E.X.; Seth, S.; Cressler, J.D.; Fleetwood, D.M.; Schrimpf, R.D.; Freeman, G. Trade-offs between RF performance and total-dose tolerance in 45-nm RF-CMOS. IEEE Trans. Nucl. Sci. 2011, 58, 2830–2837. [Google Scholar] [CrossRef]
- Appaswamy, A.; Jun, B.; Diestelhorst, R.M.; Espinel, G.; Prakash, A.G.; Cressler, J.D.; Williams, J.R. The effects of proton irradiation on 90 nm strained Si CMOS on SOI devices. In Proceedings of the 2006 IEEE Radiation Effects Data Workshop, Ponte Vedra Beach, FL, USA, 17–21 July 2006; pp. 62–65. [Google Scholar]
- Madan, A.; Verma, R.; Arora, R.; Wilcox, E.P.; Cressler, J.D.; Marshall, P.W.; Freeman, G. The enhanced role of shallow-trench isolation in ionizing radiation damage of 65 nm RF-CMOS on SOI. IEEE Trans. Nucl. Sci. 2009, 56, 3256–3261. [Google Scholar] [CrossRef]
- Schrimpf, R.D.; Daniel, M.F. (Eds.) Radiation Effects and Soft Errors in Integrated Circuits and Electronic Devices; World Scientific: Singapore, 2004; Volume 34. [Google Scholar]
- Zhang, R.; Cui, J.; Li, Y.; Guo, Q.; Zheng, Q. Total Ionizing Dose Effects on 22 nm UTBB FD-SOI MOSFETs up to 100 Mrad (Si). IEEE Trans. Electron Devices 2024, 71, 3490–3497. [Google Scholar] [CrossRef]
- Zheng, Q.; Cui, J.; Xu, L.; Ning, B.; Zhao, K.; Shen, M.; Guo, Q. Total ionizing dose responses of forward body bias ultra-thin body and buried oxide FD-SOI transistors. IEEE Trans. Nucl. Sci. 2019, 66, 702–709. [Google Scholar] [CrossRef]
- Ahn, J.H.; Yun, H.S.; Lim, S.; Lee, H.D.; Park, S.H.; Lee, H.S.; Lee, S.H. Novel method for accurate extraction of fmax for nano-scale MOSFETs. J. Korean Phys. Soc. 2004, 45, 1201–1204. [Google Scholar]
- Lovelace, D.; Costa, J.; Camilleri, N. Extracting small-signal model parameters of silicon MOSFET transistors. In Proceedings of the 1994 IEEE MTT-S International Microwave Symposium Digest (Cat. No. 94CH3389-4), San Diego, CA, USA, 23–27 May 1994; pp. 865–868. [Google Scholar]
Parameter | NFET |
---|---|
Gate length (Lg, nm) | 22 |
Gate width (WNW, nm) | 80 |
Channel thickness (Tsi, nm) | 6 |
Gate oxide thickness (Tox, nm) | 1 |
Buried oxide thickness (Tbox, nm) | 20 |
Source/Drain length (Ls/Ld, nm) | 38 |
Channel doping (Nch, cm−3) | 1 × 1015 (acceptor) 5 × 1019 (donor) |
Source/Drain doping (NS/ND, cm−3) | |
Gate work function (, eV) | 4.52 |
Parameter | NFET |
---|---|
Sub-threshold slope (SS, mV/dec) | 84.37 |
Maximum transconductance (gm, max, μS) | 285.20 |
On-state current (Ion, μA) | 91.85 |
Off-state current (Ioff, pA) | 443.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Z.; Liu, H.; Huang, M.; Wang, S.; Chen, S.; Zhou, X.; Huang, J.; Liu, C. Impact of Total Ionizing Dose on Radio Frequency Performance of 22 nm Fully Depleted Silicon-On-Insulator nMOSFETs. Micromachines 2024, 15, 1292. https://doi.org/10.3390/mi15111292
Yan Z, Liu H, Huang M, Wang S, Chen S, Zhou X, Huang J, Liu C. Impact of Total Ionizing Dose on Radio Frequency Performance of 22 nm Fully Depleted Silicon-On-Insulator nMOSFETs. Micromachines. 2024; 15(11):1292. https://doi.org/10.3390/mi15111292
Chicago/Turabian StyleYan, Zhanpeng, Hongxia Liu, Menghao Huang, Shulong Wang, Shupeng Chen, Xilong Zhou, Junjie Huang, and Chang Liu. 2024. "Impact of Total Ionizing Dose on Radio Frequency Performance of 22 nm Fully Depleted Silicon-On-Insulator nMOSFETs" Micromachines 15, no. 11: 1292. https://doi.org/10.3390/mi15111292
APA StyleYan, Z., Liu, H., Huang, M., Wang, S., Chen, S., Zhou, X., Huang, J., & Liu, C. (2024). Impact of Total Ionizing Dose on Radio Frequency Performance of 22 nm Fully Depleted Silicon-On-Insulator nMOSFETs. Micromachines, 15(11), 1292. https://doi.org/10.3390/mi15111292