CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects
Abstract
:1. Introduction
2. Blood Analysis
2.1. Target Biomarkers
2.1.1. Dopamine (DA)
2.1.2. Aptamers
2.1.3. Glucose
2.2. Applied Detection Techniques
2.2.1. Dopamine Detection
2.2.2. Therapeutic Drug Monitoring
2.2.3. Glucose Monitoring
- Biochemical SensorsBiochemical sensors, particularly electrochemical glucose sensors, form the backbone of many continuous glucose monitoring systems. These systems utilize the enzymatic reaction of glucose oxidase, where glucose is oxidized and produces hydrogen peroxide as a byproduct. This reaction generates a current proportional to the glucose concentration, which is then detected by the system.A prominent example is the Wireless Implantable Microsystem for continuous blood glucose monitoring [45]. This system integrates a microfabricated glucose biosensor flip-chip mounted onto a transponder chip. The glucose oxidase catalyzes a reaction that generates a measurable current within a range of 1 nA to 1 µA, maintaining accuracy with less than 0.3% non-linearity. The current is processed using a current-to-frequency converter, which provides power-efficient signal processing, essential for continuous monitoring. Data are transmitted wirelessly through load shift keying (LSK) and sent to an external reader via inductive coupling at 13.56 MHz, demonstrating effective performance in vitro. In [48], the same biochemical principle is employed. This design also detects hydrogen peroxide produced by the glucose oxidase reaction. It also uses a current-to-frequency converter and manages to reduce power consumption to just 4 µW, making it more suitable for long-term implantable applications. In addition to wireless power and data telemetry, this system enhances real-time glucose monitoring for extended periods. Both systems offer high accuracy by directly measuring the electrochemical reactions of glucose in the body, but they rely on invasive techniques that involve blood or interstitial fluid contact. When comparing these biochemical sensors, it is clear that both focus on precision, leveraging current-to-frequency converters to reduce power consumption while still delivering highly accurate glucose concentration measurements. Ref. [45] relies heavily on efficient signal processing to maintain power efficiency while ensuring accurate continuous monitoring, whereas [48] extends this approach, emphasizing ultra-low-power operation for prolonged use in implantable devices. Although both systems are effective for real-time glucose monitoring, their invasive nature limits patient comfort, making them less favorable for those seeking pain-free alternatives.
- Optical SensorsOptical glucose monitoring systems offer non-invasive methods for measuring glucose concentrations by utilizing light-based techniques to detect glucose in blood or interstitial fluid. Figure 3 shows this technique of sensing. These systems provide significant advantages in terms of patient comfort but face challenges with accuracy, particularly in managing noise and signal interference. For example, in one study [49], near-infrared (NIR) transmission spectroscopy was used to detect glucose levels, where NIR light is transmitted through the skin, and glucose molecules in the blood absorb specific wavelengths. The light signal is captured by a photodetector and processed using an analog front-end circuit for amplification and filtering, with data transmitted wirelessly via Bluetooth for real-time monitoring on smartphones. Although promising for non-invasive applications, further calibration is required to improve accuracy and ensure reliable glucose readings.
2.2.4. Other Techniques
2.3. Circuit Discussions
2.3.1. OG-JFET Interface
2.3.2. DCO-Based Biochemical Sensor Interface
2.3.3. Traditional Interface for Biochemical Sensing
3. Infectious Disease Detection
3.1. RNA and DNA Sequencing
3.1.1. Electrochemical Sensing
3.1.2. Fluorescence-Based Sensing
3.1.3. Nanopore-Based Sensing
3.1.4. Other Methods
3.2. Antigen/Antibody Detection
3.3. Pathogen Detection
3.4. Interface Design
3.4.1. ADC-Direct Interface for Fluorescence-Based Biosensors
3.4.2. Patch-Clamp ASIC Interface for Nanopore Sensors
3.4.3. OG-JFET Interface for Biochemical Sensing
4. Neural Interface PoC
4.1. High Dynamic Range Neural Recording
4.2. Neural Interface Microsystems
Ref. | [92] | [54] | [88] | [94] | [95] | [96] | [97] |
Applications | Brain activity classification and closed-loop neuromodulation | Bidirectional neural interface | Simultaneous neural recording and electrical stimulation | Artifact-tolerant neural recording interfaces | Wireless electro-optic headstage for closed-loop optogenetics | Seizure detection system | Implantable neural recording IC |
Targets | Neural signals in general | Electrocorticography (ECoG) and LFP signals | LFP | Neural signals, including local field potentials (LFPs) | Neural recording (APs) and real-time optogenetic stimulation | LFP | Neural signals including spikes and APs |
Tech. | 65 nm | 180 nm | 180 nm | 65 nm | 130 nm | NR | 180 nm |
Input Range [mV] | ±50 | NR | 200 | 300 | NR | NR | NR |
IRN [µVrms] | NR | 3.05 | 91.9 | 95 | NR | NR | 5.4 |
Bandwidth [Hz] | NR | 2k | 200 | 10k | NR | 3–29 | 6.4 |
Total DR [dB] | NR | NR | 91.2 | 80.4 | NR | NR | 48 |
Stimulation | On-Chip | Yes | On-Chip | No | On-Chip | No | No |
Processor | On-Chip | Yes | No | No | On-Chip | On-Chip | On-Chip |
Resolution | NR | NR | NR | NR | 16-bit | NR | 48 dB |
Power [µW] | 1.51 | 0.33 | 3.9 | 6.5 | 56.9 | 39.5 | 0.88 |
Area [mm2] | 0.014 | 0.17 | 0.225 | 0.078 | 0.08 | NR | 0.018 |
5. Commercialized PoC ICs and Devices
5.1. Commercialized ICs
5.2. Commercialized Devices
6. Future Directions
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Madimenos, F.C.; Gildner, T.E.; Eick, G.N.; Sugiyama, L.S.; Snodgrass, J.J. Bringing the lab bench to the field: Point-of-care testing for enhancing health research and stakeholder engagement in rural/remote, indigenous, and resource-limited contexts. Am. J. Hum. Biol. 2022, 34, e23808. [Google Scholar] [CrossRef] [PubMed]
- Pham, M.D.; Agius, P.A.; Romero, L.; McGlynn, P.; Anderson, D.; Crowe, S.M.; Luchters, S. Performance of point-of-care CD4 testing technologies in resource-constrained settings: A systematic review and meta-analysis. BMC Infect. Dis. 2016, 16, 592. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.C.; Chen, C.S.; Chan, Y.J. The outbreak of COVID-19: An overview. J. Chin. Med. Assoc. 2020, 83, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Remuzzi, A.; Remuzzi, G. COVID-19 and Italy: What next? Lancet 2020, 395, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, C.; Alsafi, Z.; O’neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76. [Google Scholar] [CrossRef]
- Morens, D.M.; Fauci, A.S. The 1918 influenza pandemic: Insights for the 21st century. J. Infect. Dis. 2007, 195, 1018–1028. [Google Scholar] [CrossRef]
- Gram, F.C. The influenza epidemic and its after-effects in the city of Buffalo: A detailed survey. J. Am. Med. Assoc. 1919, 73, 886–891. [Google Scholar] [CrossRef]
- Traeger, M.W.; Schroeder, S.E.; Wright, E.J.; Hellard, M.E.; Cornelisse, V.J.; Doyle, J.S.; Stoové, M.A. Effects of pre-exposure prophylaxis for the prevention of human immunodeficiency virus infection on sexual risk behavior in men who have sex with men: A systematic review and meta-analysis. Clin. Infect. Dis. 2018, 67, 676–686. [Google Scholar] [CrossRef]
- Chin, H.B.; Sipe, T.A.; Elder, R.; Mercer, S.L.; Chattopadhyay, S.K.; Jacob, V.; Wethington, H.R.; Kirby, D.; Elliston, D.B.; Griffith, M.; et al. The effectiveness of group-based comprehensive risk-reduction and abstinence education interventions to prevent or reduce the risk of adolescent pregnancy, human immunodeficiency virus, and sexually transmitted infections: Two systematic reviews for the Guide to Community Preventive Services. Am. J. Prev. Med. 2012, 42, 272–294. [Google Scholar]
- Ksiazek, T.G.; Erdman, D.; Goldsmith, C.S.; Zaki, S.R.; Peret, T.; Emery, S.; Tong, S.; Urbani, C.; Comer, J.A.; Lim, W.; et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1953–1966. [Google Scholar] [CrossRef]
- Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Penaranda, S.; Bankamp, B.; Maher, K.; Chen, M.h.; et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300, 1394–1399. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, M.; Wang, Z.; Li, S.; Deng, Y.; He, N. Point-of-care diagnostics for infectious diseases: From methods to devices. Nano Today 2021, 37, 101092. [Google Scholar] [CrossRef] [PubMed]
- Svigelj, R.; De Marco, A. Biological and technical factors affecting the point-of-care diagnostics in not-oncological chronic diseases. Biosens. Bioelectron. 2024, 264, 116669. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Steckl, A.J. Paper Microfluidics for Point-of-Care Blood-Based Analysis and Diagnostics. Anal. Chem. 2019, 91, 352–371. [Google Scholar] [CrossRef] [PubMed]
- Van Dorst, B.; Brivio, M.; Van Der Sar, E.; Blom, M.; Reuvekamp, S.; Tanzi, S.; Groenhuis, R.; Adojutelegan, A.; Lous, E.J.; Frederix, F.; et al. Integration of an optical CMOS sensor with a microfluidic channel allows a sensitive readout for biological assays in point-of-care tests. Biosens. Bioelectron. 2016, 78, 126–131. [Google Scholar] [CrossRef]
- Devadhasan, J.P.; Yoo, I.S.; Kim, S. Overview of CMOS image sensor use in molecular diagnostics. Curr. Appl. Phys. 2015, 15, 402–411. [Google Scholar] [CrossRef]
- Cacho-Soblechero, M.; Georgiou, P. A programmable, highly linear and PVT-insensitive ISFET array for PoC diagnosis. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Zhu, C.; Maldonado, J.; Tang, H.; Venkatesh, S.; Sengupta, K. 18.2 CMOS-driven pneumatic-free scalable microfluidics and fluid processing with label-free cellular and bio-molecular sensing capability for an end-to-end point-of-care system. In Proceedings of the 2021 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 13–22 February 2021; Volume 64, pp. 278–280. [Google Scholar]
- Hofmann, A.; Meister, M.; Rolapp, A.; Reich, P.; Scholz, F.; Schäfer, E. Light absorption measurement with a CMOS biochip for quantitative immunoassay based point-of-care applications. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 369–379. [Google Scholar] [CrossRef]
- Forouhi, S.; Ghafar-Zadeh, E. Applications of CMOS devices for the diagnosis and control of infectious diseases. Micromachines 2020, 11, 1003. [Google Scholar] [CrossRef]
- Arumugam, S.; Colburn, D.A.; Sia, S.K. Biosensors for personal mobile health: A system architecture perspective. Adv. Mater. Technol. 2020, 5, 1900720. [Google Scholar] [CrossRef]
- Khan, S.M.; Gumus, A.; Nassar, J.M.; Hussain, M.M. CMOS enabled microfluidic systems for healthcare based applications. Adv. Mater. 2018, 30, 1705759. [Google Scholar] [CrossRef]
- Malpartida-Cardenas, K.; Miscourides, N.; Rodriguez-Manzano, J.; Yu, L.S.; Moser, N.; Baum, J.; Georgiou, P. Quantitative and rapid Plasmodium falciparum malaria diagnosis and artemisinin-resistance detection using a CMOS Lab-on-Chip platform. Biosens. Bioelectron. 2019, 145, 111678. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Tansukawat, N.D.; Gonzalez-Macia, L.; Ates, H.C.; Dincer, C.; Guder, F.; Tasoglu, S.; Yetisen, A.K. Low-cost optical assays for point-of-care diagnosis in resource-limited settings. ACS Sens. 2021, 6, 2108–2124. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.M.; Mak, P.I.; Law, M.K.; Martins, R.P. CMOS biosensors for in vitro diagnosis–transducing mechanisms and applications. Lab Chip 2016, 16, 3664–3681. [Google Scholar] [CrossRef] [PubMed]
- Kubina, R.; Dziedzic, A. Molecular and serological tests for COVID-19. A comparative review of SARS-CoV-2 coronavirus laboratory and point-of-care diagnostics. Diagnostics 2020, 10, 434. [Google Scholar] [CrossRef]
- Li, P.; Lee, G.H.; Kim, S.Y.; Kwon, S.Y.; Kim, H.R.; Park, S. From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices. ACS Nano 2021, 15, 1960–2004. [Google Scholar] [CrossRef]
- Li, F.; You, M.; Li, S.; Hu, J.; Liu, C.; Gong, Y.; Yang, H.; Xu, F. based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol. Adv. 2020, 39, 107442. [Google Scholar] [CrossRef]
- Docan, A.; Grecu, I.; Dediu, L. Use of hematological parameters as assessment tools in fish health status. J. Agrolimentary Process. Technol. 2018, 24, 317–324. [Google Scholar]
- Abe, S.; Shiono, T. Retinochoroidal circulatory disturbances and blood component abnormalities. Nippon. Ganka Gakkai Zasshi 1995, 99, 255–261. [Google Scholar]
- Nguyen, J. Development of a Fully Monolithic Microfluidic Device for Complete Blood Count; University of Toronto (Canada): Toronto, ON, Canada, 2014. [Google Scholar]
- Zhu, H.; Macal, M.; Jones, C.N.; George, M.D.; Dandekar, S.; Revzin, A. A miniature cytometry platform for capture and characterization of T-lymphocytes from human blood. Anal. Chim. Acta 2008, 608, 186–196. [Google Scholar] [CrossRef]
- Nasri, B.; Wu, T.; Alharbi, A.; You, K.D.; Gupta, M.; Sebastian, S.P.; Kiani, R.; Shahrjerdi, D. Hybrid CMOS-Graphene Sensor Array for Subsecond Dopamine Detection. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1192–1203. [Google Scholar] [CrossRef]
- He, W.; Ye, X.; Cui, T. Flexible Electrochemical Sensor with Graphene and Gold Nanoparticles to Detect Dopamine and Uric Acid. IEEE Sens. J. 2021, 21, 26556–26565. [Google Scholar] [CrossRef]
- Klein, M.O.; Battagello, D.S.; Cardoso, A.R.; Hauser, D.N.; Bittencourt, J.C.; Correa, R.G. Dopamine: Functions, signaling, and association with neurological diseases. Cell. Mol. Neurobiol. 2019, 39, 31–59. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Neumeyer, J.L.; Baldessarini, R.J. Recent progress in development of dopamine receptor subtype-selective agents: Potential therapeutics for neurological and psychiatric disorders. Chem. Rev. 2007, 107, 274–302. [Google Scholar] [CrossRef]
- Li, D.C.; Lu, M.S.C. CMOS open-gate ion sensitive field effect transistors for femto-molar dopamine detection. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 419–423. [Google Scholar] [CrossRef]
- Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov. 2010, 9, 537–550. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.C.; Mage, P.L.; Soh, H.T.; Arbabian, A. An Aptamer-based Electrochemical-Sensing Implant for Continuous Therapeutic- Drug Monitoring in vivo. In Proceedings of the 2019 Symposium on VLSI Circuits, Kyoto, Japan, 9–14 June 2019; pp. C312–C313. [Google Scholar] [CrossRef]
- Chien, J.C.; Baker, S.W.; Soh, H.T.; Arbabian, A. Design and Analysis of a Sample-and-Hold CMOS Electrochemical Sensor for Aptamer-Based Therapeutic Drug Monitoring. IEEE J. Solid State Circuits 2020, 55, 2914–2929. [Google Scholar] [CrossRef]
- Bruen, D.; Delaney, C.; Florea, L.; Diamond, D. Glucose sensing for diabetes monitoring: Recent developments. Sensors 2017, 17, 1866. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Zhang, Y.; Lloret, J.; Song, H.; Obradovic, Z. Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects. IEEE Rev. Biomed. Eng. 2018, 11, 21–35. [Google Scholar] [CrossRef]
- Zhang, G.; Mei, Z.; Zhang, Y.; Ma, X.; Lo, B.; Chen, D.; Zhang, Y. A Noninvasive Blood Glucose Monitoring System Based on Smartphone PPG Signal Processing and Machine Learning. IEEE Trans. Ind. Inform. 2020, 16, 7209–7218. [Google Scholar] [CrossRef]
- Ahmadi, M.M.; Jullien, G.A. A Wireless-Implantable Microsystem for Continuous Blood Glucose Monitoring. IEEE Trans. Biomed. Circuits Syst. 2009, 3, 169–180. [Google Scholar] [CrossRef]
- Muralidharan, R.; Chandrashekhar, V.; Butler, D.; Ebrahimi, A. A Smartphone-Interfaced, Flexible Electrochemical Biosensor Based on Graphene Ink for Selective Detection of Dopamine. IEEE Sens. J. 2020, 20, 13204–13211. [Google Scholar] [CrossRef]
- Dorta-Quiñones, C.I.; Wang, X.Y.; Dokania, R.K.; Gailey, A.; Lindau, M.; Apsel, A.B. A Wireless FSCV Monitoring IC with Analog Background Subtraction and UWB Telemetry. IEEE Trans. Biomed. Circuits Syst. 2016, 10, 289–299. [Google Scholar] [CrossRef]
- Agarwal, A.; Gural, A.; Monge, M.; Adalian, D.; Chen, S.; Scherer, A.; Emami, A. A 4 μW, ADPLL-based implantable amperometric biosensor in 65 nm CMOS. In Proceedings of the 2017 Symposium on VLSI Circuits, Kyoto, Japan, 5–9 June 2017; pp. C108–C109. [Google Scholar] [CrossRef]
- Haxha, S.; Jhoja, J. Optical based noninvasive glucose monitoring sensor prototype. IEEE Photonics J. 2016, 8, 6805911. [Google Scholar] [CrossRef]
- Maji, D.; Suster, M.A.; Kucukal, E.; Sekhon, U.D.S.; Gupta, A.S.; Gurkan, U.A.; Stavrou, E.X.; Mohseni, P. ClotChip: A Microfluidic Dielectric Sensor for Point-of-Care Assessment of Hemostasis. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 1459–1469. [Google Scholar] [CrossRef] [PubMed]
- Jana, B.; Biswas, R.; Nath, P.K.; Saha, G.; Banerjee, S. Smartphone-Based Point-of-Care System Using Continuous-Wave Portable Doppler. IEEE Trans. Instrum. Meas. 2020, 69, 8352–8361. [Google Scholar] [CrossRef]
- Jiang, H.; Zhou, X.; Kulkarni, S.; Uranian, M.; Seenivasan, R.; Hall, D.A. A Sub-1 μW multiparameter injectable BioMote for continuous alcohol monitoring. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Panahi, A.; Tabrizi, H.O.; Mangannavar, P.; Chebotarev, O.; Fung, A.; Ghafar-Zadeh, E. Open-Gate Junction Field Effect Transistor (OG-JFET) for Life Science Applications: Design, Implementation, and Characterization. IEEE Sens. J. 2021, 21, 26503–26514. [Google Scholar] [CrossRef]
- Jeon, H.; Bang, J.S.; Jung, Y.; Choi, I.; Je, M. A High DR, DC-Coupled, Time-Based Neural-Recording IC With Degeneration R-DAC for Bidirectional Neural Interface. IEEE J. Solid State Circuits 2019, 54, 2658–2670. [Google Scholar] [CrossRef]
- Morano, J.P.; Zelenev, A.; Lombard, A.; Marcus, R.; Gibson, B.A.; Altice, F.L. Strategies for hepatitis C testing and linkage to care for vulnerable populations: Point-of-care and standard HCV testing in a mobile medical clinic. J. Community Health 2014, 39, 922–934. [Google Scholar] [CrossRef]
- Zucker, D.M.; Shanmugam, A. Hepatitis C Point-of-Care Testing in Vulnerable Populations: A Human Factors Study. Gastroenterol. Nurs. 2016, 39, 472–477. [Google Scholar] [CrossRef]
- Morris, M.D.; McDonell, C.; Luetkemeyer, A.F.; Thawley, R.; McKinney, J.; Price, J.C. Community-based point-of-diagnosis hepatitis c treatment for marginalized populations: A nonrandomized controlled trial. JAMA Netw. Open 2023, 6, e2338792. [Google Scholar] [CrossRef]
- Zhu, C.; Maldonado, J.; Sengupta, K. CMOS-Based Electrokinetic Microfluidics With Multi-Modal Cellular and Bio-Molecular Sensing for End-to-End Point-of-Care System. IEEE Trans. Biomed. Circuits Syst. 2021, 15, 1250–1267. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.M.; Abdelhalim, K.; Soleymani, L.; Sargent, E.H.; Kelley, S.O.; Genov, R. Nanostructured CMOS Wireless Ultra-Wideband Label-Free PCR-Free DNA Analysis SoC. IEEE J. Solid State Circuits 2014, 49, 1223–1241. [Google Scholar] [CrossRef]
- Manickam, A.; You, K.D.; Wood, N.; Pei, L.; Liu, Y.; Singh, R.; Gamini, N.; McDermott, M.W.; Shahrjerdi, D.; Kuimelis, R.G.; et al. A CMOS Electrochemical Biochip with 32 × 32 Three-Electrode Voltammetry Pixels. IEEE J. Solid State Circuits 2019, 54, 2980–2990. [Google Scholar] [CrossRef]
- Hsu, C.L.; Sun, A.; Zhao, Y.; Aronoff-Spencer, E.; Hall, D.A. A 16 × 20 electrochemical CMOS biosensor array with in-pixel averaging using polar modulation. In Proceedings of the 2018 IEEE Custom Integrated Circuits Conference (CICC), San Diego, CA, USA, 8–11 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Manickam, A.; Singh, R.; McDermott, M.W.; Wood, N.; Bolouki, S.; Naraghi-Arani, P.; Johnson, K.A.; Kuimelis, R.G.; Schoolnik, G.; Hassibi, A. A Fully Integrated CMOS Fluorescence Biochip for DNA and RNA Testing. IEEE J. Solid State Circuits 2017, 52, 2857–2870. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Bazan, G.C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem. Mater. 2004, 16, 4467–4476. [Google Scholar] [CrossRef]
- Gassman, N.R.; Holton, N.W. Targets for repair: Detecting and quantifying DNA damage with fluorescence-based methodologies. Curr. Opin. Biotechnol. 2019, 55, 30–35. [Google Scholar] [CrossRef]
- Kim, J.; Maitra, R.; Pedrotti, K.D.; Dunbar, W.B. A patch-clamp ASIC for nanopore-based DNA analysis. IEEE Trans. Biomed. Circuits Syst. 2012, 7, 285–295. [Google Scholar] [CrossRef]
- Xue, L.; Yamazaki, H.; Ren, R.; Wanunu, M.; Ivanov, A.P.; Edel, J.B. Solid-state nanopore sensors. Nat. Rev. Mater. 2020, 5, 931–951. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Y.; Gu, Z.; Zheng, F.; Sha, J.; Chen, Y. Structure Design of Silicon Based Nanopore Chips for Noise Reduction. IEEE Sens. J. 2023, 24, 2405–2412. [Google Scholar] [CrossRef]
- Rosenstein, J.K.; Shepard, K.L. Temporal resolution of nanopore sensor recordings. In Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 4110–4113. [Google Scholar]
- Adamopoulos, C.; Oh, H.S.; Buchbinder, S.; Zarkos, P.; Bhargava, P.; Gharia, A.; Niknejad, A.M.; Anwar, M.; Stojanović, V. Monolithic Electronic–Biophotonic System-on-Chip for Label-Free Real-Time Molecular Sensing. IEEE J. Solid State Circuits 2024, 59, 2907–2921. [Google Scholar] [CrossRef]
- Jung, D.; Junek, G.V.; Park, J.S.; Kumashi, S.R.; Wang, A.; Li, S.; Grijalva, S.I.; Fernandez, N.; Cho, H.C.; Wang, H. A CMOS 21 952-Pixel Multi-Modal Cell-Based Biosensor With Four-Point Impedance Sensing for Holistic Cellular Characterization. IEEE J. Solid State Circuits 2021, 56, 2438–2451. [Google Scholar] [CrossRef]
- Sun, A.C.; Alvarez-Fontecilla, E.; Venkatesh, A.G.; Aronoff-Spencer, E.; Hall, D.A. High-Density Redox Amplified Coulostatic Discharge-Based Biosensor Array. IEEE J. Solid State Circuits 2018, 53, 2054–2064. [Google Scholar] [CrossRef] [PubMed]
- Parsnejad, S.; Li, H.; Mason, A.J. Compact CMOS amperometric readout for nanopore arrays in high throughput lab-on-CMOS. In Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 2851–2854. [Google Scholar]
- Manickam, A.; Johnson, K.A.; Singh, R.; Wood, N.; Ku, E.; Cuppoletti, A.; McDermott, M.; Hassibi, A. Multiplex PCR CMOS Biochip for Detection of Upper Respiratory Pathogens including SARS-CoV-2. In Proceedings of the 2021 Symposium on VLSI Circuits, Kyoto, Japan, 13–19 June 2021; pp. 1–2. [Google Scholar] [CrossRef]
- Panahi, A.; Sadighbayan, D.; Ghafar-Zadeh, E. Electronic Sensing Platform (ESP) Based on Open-Gate Junction Field-Effect Transistor (OG-JFET) for Life Science Applications: Design, Modeling and Experimental Results. Sensors 2021, 21, 7491. [Google Scholar] [CrossRef]
- Galizia, C.G.; Lledo, P.M. Neurosciences-From Molecule to Behavior: A University Textbook; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Hahn, G.; Ponce-Alvarez, A.; Deco, G.; Aertsen, A.; Kumar, A. Portraits of communication in neuronal networks. Nat. Rev. Neurosci. 2019, 20, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Maiese, K. The metabolic basis for nervous system dysfunction in alzheimer’s disease, parkinson’s disease, and huntington’s disease. Curr. Neurovascular Res. 2023, 20, 314. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.M.; Kwon, K.Y.; Li, W.; Ghovanloo, M. A Power-Efficient Switched-Capacitor Stimulating System for Electrical/Optical Deep Brain Stimulation. IEEE J. Solid State Circuits 2015, 50, 360–374. [Google Scholar] [CrossRef]
- Vidal, J.; Ghovanloo, M. Towards a Switched-Capacitor based Stimulator for efficient deep-brain stimulation. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 2927–2930. [Google Scholar] [CrossRef]
- Herron, J.A.; Thompson, M.C.; Brown, T.; Chizeck, H.J.; Ojemann, J.G.; Ko, A.L. Cortical Brain–Computer Interface for Closed-Loop Deep Brain Stimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2180–2187. [Google Scholar] [CrossRef]
- Salam, M.T.; Velazquez, J.L.P.; Genov, R. Seizure suppression efficacy of closed-loop versus open-loop deep brain stimulation in a rodent model of epilepsy. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 710–719. [Google Scholar] [CrossRef]
- Harrison, R.; Charles, C. A low-power low-noise CMOS amplifier for neural recording applications. IEEE J. Solid State Circuits 2003, 38, 958–965. [Google Scholar] [CrossRef]
- Moeinfard, T. An 8-Channel Bidirectional Neurostimulator IC with a Highly-Linear High-Dynamic-Range ADC-Direct Architecture for Simultaneous Recording and Stimulation; York University: Toronto, Canada, 2020. [Google Scholar]
- Chandrakumar, H.; Marković, D. A 15.2-ENOB 5-kHz BW 4.5-μW Chopped CT ΔΣ-ADC for Artifact-Tolerant Neural Recording Front Ends. IEEE J. Solid State Circuits 2018, 53, 3470–3483. [Google Scholar] [CrossRef]
- Kim, C.; Joshi, S.; Courellis, H.; Wang, J.; Miller, C.; Cauwenberghs, G. Sub-μVrms-Noise Sub-μW/Channel ADC-Direct Neural Recording with 200-mV/ms Transient Recovery Through Predictive Digital Autoranging. IEEE J. Solid State Circuits 2018, 53, 3101–3110. [Google Scholar] [CrossRef]
- Zhao, W.; Li, S.; Xu, B.; Yang, X.; Tang, X.; Shen, L.; Lu, N.; Pan, D.Z.; Sun, N. A 0.025-mm2 0.8-V 78.5-dB SNDR VCO-Based Sensor Readout Circuit in a Hybrid PLL- ΔΣ M Structure. IEEE J. Solid State Circuits 2020, 55, 666–679. [Google Scholar] [CrossRef]
- Moeinfard, T.; Zoidl, G.; Kassiri, H. A SAR-Assisted DC-Coupled Chopper-Stabilized 20μs-Artifact-Recovery ΔΣ ADC for Simultaneous Neural Recording and Stimulation. In Proceedings of the 2022 IEEE Custom Integrated Circuits Conference (CICC), Newport Beach, CA, USA, 24–27 April 2022; pp. 1–2. [Google Scholar] [CrossRef]
- Lee, C.; Jeon, T.; Jang, M.; Park, S.; Kim, J.; Lim, J.; Ahn, J.H.; Huh, Y.; Chae, Y. A 6.5-μW 10-kHz BW 80.4-dB SNDR G m-C-Based CTΔΣ Modulator With a Feedback-Assisted Gm Linearization for Artifact-Tolerant Neural Recording. IEEE J. Solid State Circuits 2020, 55, 2889–2901. [Google Scholar] [CrossRef]
- Xu, J.; Nguyen, A.T.; Wu, T.; Zhao, W.; Luu, D.K.; Yang, Z. A Wide Dynamic Range Neural Data Acquisition System with High-Precision Delta-Sigma ADC and On-Chip EC-PC Spike Processor. IEEE Trans. Biomed. Circuits Syst. 2020, 14, 425–440. [Google Scholar] [CrossRef]
- Shin, U.; Somappa, L.; Ding, C.; Vyza, Y.; Zhu, B.; Trouillet, A.; Lacour, S.P.; Shoaran, M. A 256-Channel 0.227 µJ/class Versatile Brain Activity Classification and Closed-Loop Neuromodulation SoC with 0.004 mm2–1.51 µW/channel Fast-Settling Highly Multiplexed Mixed-Signal Front-End. In Proceedings of the 2022 IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, CA, USA, 20–26 February 2022; Volume 65, pp. 338–340. [Google Scholar] [CrossRef]
- Saki, E.F.; Setiawan, S.A.; Wicaksono, D.H.B. Portable Tools for COVID-19 Point-of-Care Detection: A Review. IEEE Sens. J. 2021, 21, 23737–23750. [Google Scholar] [CrossRef]
- Mendrela, A.E.; Cho, J.; Fredenburg, J.A.; Nagaraj, V.; Netoff, T.I.; Flynn, M.P.; Yoon, E. A Bidirectional Neural Interface Circuit With Active Stimulation Artifact Cancellation and Cross-Channel Common-Mode Noise Suppression. IEEE J. Solid State Circuits 2016, 51, 955–965. [Google Scholar] [CrossRef]
- Harrison, R.R.; Kier, R.J.; Chestek, C.A.; Gilja, V.; Nuyujukian, P.; Ryu, S.; Greger, B.; Solzbacher, F.; Shenoy, K.V. Wireless Neural Recording With Single Low-Power Integrated Circuit. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Gagnon-Turcotte, G.; Keramidis, I.; Ethier, C.; De Koninck, Y.; Gosselin, B. A Wireless Electro-Optic Headstage with a 0.13-μm CMOS Custom Integrated DWT Neural Signal Decoder for Closed-Loop Optogenetics. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1036–1051. [Google Scholar] [CrossRef] [PubMed]
- Sayeed, M.A.; Mohanty, S.P.; Kougianos, E.; Zaveri, H.P. eSeiz: An Edge-Device for Accurate Seizure Detection for Smart Healthcare. IEEE Trans. Consum. Electron. 2019, 65, 379–387. [Google Scholar] [CrossRef]
- Kim, S.J.; Han, S.H.; Cha, J.H.; Liu, L.; Yao, L.; Gao, Y.; Je, M. A Sub-μW/Ch Analog Front-End for Δ-Neural Recording with Spike-Driven Data Compression. IEEE Trans. Biomed. Circuits Syst. 2019, 13, 1–14. [Google Scholar] [CrossRef]
- Gagnon-Turcotte, G.; Bilodeau, G.; Tsiakaka, O.; Gosselin, B. Smart Autonomous Electro-Optic Platforms Enabling Innovative Brain Therapies. IEEE Circuits and Systems Magazine 2020, 20, 28–46. [Google Scholar] [CrossRef]
- Scagliusi, S.F.; Pérez, P.; Martín, D.; Huertas, G.; Olmo, A.; Yúfera, A.; Delano, M. Enhancing the Precision of AD5940 Segmental Bioimpedance Measurements through Self-Calibration. In Proceedings of the 2023 IEEE BioSensors Conference (BioSensors), London, UK, 30 July–1 August 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Nhu, C.T.; Van, P.N.; Thi, L.D.; Quang, L.D.; Jen, C.P.; Duc, T.C.; Thanh, T.B. Research and Development of A Portable Impedance Measurement System Utilizing AD5941 Analog Integrated Circuit for A549 Lung Cancer Cell Detection. In Proceedings of the 2023 1st International Conference on Health Science and Technology (ICHST), Hanoi, Vietnam, 28–29 December 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Perdomo, S.A.; Ortega, V.; Jaramillo-Botero, A.; Mancilla, N.; Mosquera-DeLaCruz, J.H.; Valencia, D.P.; Quimbaya, M.; Contreras, J.D.; Velez, G.E.; Loaiza, O.A.; et al. SenSARS: A Low-Cost Portable Electrochemical System for Ultra-Sensitive, Near Real-Time, Diagnostics of SARS-CoV-2 Infections. IEEE Trans. Instrum. Meas. 2021, 70, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Anitha, A.; Das, A.; Deepalakshmi, G.; Suman, P. Point-of-care impedimetric aptasensor to detect the luteinizing hormone. Microchim. Acta 2024, 191, 115. [Google Scholar] [CrossRef] [PubMed]
- Cnoga Medical. MTX Medical Monitoring Device. 2024. Available online: https://cnogacare.co/mtx (accessed on 21 October 2024).
- OrSense. OrSense Products. 2024. Available online: https://orsense.com/products/ (accessed on 21 October 2024).
- Samsung Healthcare. Samsung LABGEO PT10 Point-of-Care. 2024. Available online: https://previous.samsunghealthcare.com/en/products/PortableCT/Samsung%20LABGEO%20PT10/Point-of-Care/showroom (accessed on 21 October 2024).
- Pathfast. Pathfast—Immunoanalyzer for Point-of-Care Testing. 2024. Available online: https://www.pathfast.com/ (accessed on 21 October 2024).
- Response Biomedical. Response Biomedical—Systems. 2024. Available online: https://responsebio.com/systems/ (accessed on 21 October 2024).
- Sopachem. Aspect Plus ST2 Rapid Test Reader. 2024. Available online: https://www.sopachem.com/diagnostics/portfolio/aspect-plus-st2-rapid-test-reader/ (accessed on 21 October 2024).
- Abbott Laboratories. i-STAT System. 2024. Available online: https://www.globalpointofcare.abbott/us/en/product-details/apoc/i-stat-system-us.html (accessed on 29 September 2024).
- Cepheid. Race to Stop AMR. 2024. Available online: https://info.cepheid.com/l/287772/2023-08-04/37192f (accessed on 29 September 2024).
- Medtronic. Percept PC Neurostimulator—Deep Brain Stimulation System. 2024. Available online: https://www.medtronic.com/ca-en/healthcare-professionals/products/neurological/deep-brain-stimulation-systems/percept-pc.html (accessed on 29 September 2024).
- Neuralink. Neuralink Official Website. 2024. Available online: https://neuralink.com/ (accessed on 29 September 2024).
- Tandem Diabetes Care. t:slim X2 Insulin Pump. 2024. Available online: https://www.tandemdiabetes.com/en-ca/products/insulin-pumps/tslim-x2-insulin-pump (accessed on 29 September 2024).
- Abbott Laboratories. FreeStyle Libre. 2024. Available online: https://www.freestyle.abbott/ie-en/products/freestyle-libre.html (accessed on 29 September 2024).
- Medtronic. MiniMed 780G System. 2024. Available online: https://www.medtronic.com/ca-fr/diabetes/accueil/c/minimed-780g-se.html (accessed on 29 September 2024).
- Omnipod. Omnipod DASH. 2024. Available online: https://www.omnipod.com/en-ca/what-is-omnipod/omnipod-dash (accessed on 29 September 2024).
- Sharma, A.; Singh, A.; Gupta, V.; Arya, S. Advancements and future prospects of wearable sensing technology for healthcare applications. Sens. Diagn. 2022, 1, 387–404. [Google Scholar] [CrossRef]
- Lu, T.; Ji, S.; Jin, W.; Yang, Q.; Luo, Q.; Ren, T.L. Biocompatible and long-term monitoring strategies of wearable, ingestible and implantable biosensors: Reform the next generation healthcare. Sensors 2023, 23, 2991. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Castelli, F.A.; Rosati, G.; Moguet, C.; Fuentes, C.; Marrugo-Ramírez, J.; Lefebvre, T.; Volland, H.; Merkoçi, A.; Simon, S.; Fenaille, F.; et al. Metabolomics for personalized medicine: The input of analytical chemistry from biomarker discovery to point-of-care tests. Anal. Bioanal. Chem. 2022, 414, 759–789. [Google Scholar] [CrossRef]
- Kumar, S.; Nehra, M.; Khurana, S.; Dilbaghi, N.; Kumar, V.; Kaushik, A.; Kim, K.H. Aspects of point-of-care diagnostics for personalized health wellness. Int. J. Nanomed. 2021, 383–402. [Google Scholar] [CrossRef]
- Napione, L. Integrated nanomaterials and nanotechnologies in lateral flow tests for personalized medicine applications. Nanomaterials 2021, 11, 2362. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Akram, M.S.; Lowe, C.R. based microfluidic point-of-care diagnostic devices. Lab Chip 2013, 13, 2210–2251. [Google Scholar] [CrossRef]
- Panahi, A.; Ghafar-Zadeh, E. A hybrid microfluidic electronic sensing platform for life science applications. Micromachines 2022, 13, 425. [Google Scholar] [CrossRef] [PubMed]
- Prasanna, K.; Ramana, K.; Dhiman, G.; Kautish, S.; Chakravarthy, V.D. PoC Design: A Methodology for Proof-of-Concept (PoC) Development on Internet of Things Connected Dynamic Environments. Secur. Commun. Netw. 2021, 2021, 7185827. [Google Scholar] [CrossRef]
- Ozer, T.; Agir, I.; Henry, C.S. Low-cost Internet of Things (IoT)-enabled a wireless wearable device for detecting potassium ions at the point of care. Sens. Actuators B Chem. 2022, 365, 131961. [Google Scholar] [CrossRef]
- Qazi, S.; Raza, K. Smart biosensors for an efficient point of care (PoC) health management. In Smart Biosensors in Medical Care; Elsevier: Amsterdam, The Netherlands, 2020; pp. 65–85. [Google Scholar]
Ref. | [41] | [40] | [33] | [47] | [37] | [46] | [48] | [52] | [34] | |
Applications | Personalized Pharmacokinetics | Neuroscience | In vivo Monitoring | Pathobiology of diseases. | ||||||
Targets | Small-molecule drugs | Dopamine | Glucose/Ethanol/H2O2 | Dopamine and Uric Acid | ||||||
Recognition element | Structure-switching aptamers | None (limited to electroactive molecules) | ISFET | Graphene | Enzyme (GOx/Aox) | Molecules | ||||
Tech. | 65 nm | 65 nm | 65 nm | 65 nm | 0.35 µm | 65 nm | 65 nm | |||
Read-out method | SWV (Square-Wave Voltammetry) | CA (Chronoamperometry) | SWV | FSCV (Fast Scan Cyclic Voltammetry) | FSCV | Self-oscillating circuit | CV (Cyclic Voltammetry) | Amp. | CA | Voltammetry |
Electrode, Area | Au, 0.25 mm2 | Au, 0.25 mm2 | Graphene, 1000 µm2 | CFM, 2400 µm2 | Ag/AgCl, 10 µm2 | Graphene as WE Ag/AgCl as RE | Pt, 0.0144 mm2 | Au, 0.025 mm2 | GP5AuNPs5, 0.051 cm2 | |
Potentiostat | On-chip | On-chip | On-chip | n.a. | n.a. | Integrated | On-chip | On-chip | n.a. | |
Waveform Generator | On-chip | On-chip | Off-chip | Off-chip | On-chip | Integrated | On-chip | On-chip | n.a. | |
Sensor IRN (SNR=1) | 4.36 nArms | 15.2 pArms | 1.6 nArms | 20 pArms | 92 pArms | n.a. | n.a. | 100 pArms | 1.24 nArms | n.a. |
Bandwidth | 2.5 kHz | 2.5 kHz | 2 kHz | 1 kHz | 2 kHz | n.a. | n.a. | n.a. | n.a. | n.a. |
Imax | ±800 nA | ±2.5 nA | ±800 nA | ±2.56 nA | ±430 nA | 6 µA | n.a. | 350 nA | 80 nA | n.a. |
Total DR (Imax/Inoise, rms) | 100 dB | 60 dB | 108 dB | 79.4 dB | 43 dB | n.a. | 70.9 dB | 36.1 dB | n.a. | |
Electrochemical Data Acquisition Rate | 0.5 Hz | 5 Hz | 0.5 Hz | 100 Hz | 100 Hz | n.a. | n.a. | n.a. | n.a. | n.a. |
Power | 5.25 mW | 0.22 mW | 6.64 mW | 36 µW | 14.4 µW | n.a. | n.a. | 4 µW | 0.97 µW | n.a. |
Ref. | [62] | [73] | [61] | [69] | [71] |
Applications | Medical Diagnostics | Detection of Upper Respiratory Pathogens | Detection of Ebola, Zika, etc. | PoC for Fast-Spreading Diseases | Infectious Disease Detection (Vaccine Screening) |
Targets | Flu, RSV, HPIV, … | DNA/RNA of Upper Respiratory Pathogens (COVID, FluA, FluB, RSV) | DNA Hybridization for Detecting the Zika Virus | Pathogens | Antibody |
Recognition Element | Fluorescence Biosensing Pixel Array | Biosensing Pixels | Electrochemical CMOS | Microring Resonators (MRRs) | Electrochemical Sensor |
Tech. | 0.25 µm CMOS | CMOS | 180 nm | 45 nm RFSOI | TSMC 180 nm |
Read-out Method | Continuous Wave (CW) Fluorescence-Based Detection | Quantitative Polymerase Chain Reaction (PCR) Technique | Measurement of Impedance Change Between Electrode and Solution | Resonant Shift by Molecular Binding | Redox-Amplified Coulostatic Discharge |
Sensor Input Noise | 5.5 pA @ 90 Hz | NR | NR | 170 pA | NR |
Bandwidth (Hz) | 50 | NR | 5k–1M | 25 MHz (assuming Nyquist rate) | 5k–1M |
Imax | NR | 10 nA | NR | 100 µA | NR |
Total DR (Imax/Inoise, rms) | 116 dB | 137 dB | NR | 100 µA/10 nA | 40 dB |
Data Communication | NR | SPI | SPI | No | NR |
Power | 118 mW | 25 mW | 197 µW | NR | 63 µW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moeinfard, T.; Ghafar-Zadeh, E.; Magierowski, S. CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects. Micromachines 2024, 15, 1320. https://doi.org/10.3390/mi15111320
Moeinfard T, Ghafar-Zadeh E, Magierowski S. CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects. Micromachines. 2024; 15(11):1320. https://doi.org/10.3390/mi15111320
Chicago/Turabian StyleMoeinfard, Tania, Ebrahim Ghafar-Zadeh, and Sebastian Magierowski. 2024. "CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects" Micromachines 15, no. 11: 1320. https://doi.org/10.3390/mi15111320
APA StyleMoeinfard, T., Ghafar-Zadeh, E., & Magierowski, S. (2024). CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects. Micromachines, 15(11), 1320. https://doi.org/10.3390/mi15111320