The 15th Anniversary of Micromachines

A special issue of Micromachines (ISSN 2072-666X).

Deadline for manuscript submissions: 31 December 2024 | Viewed by 26659

Special Issue Editors


E-Mail Website
Guest Editor
1. Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hong Kong, China
2. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
Interests: NEMS/MEMS; optofluidics; metasurface; nanophotonics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD 4111, Australia
Interests: microfluidics; nanofluidics; micro/nanomachining technologies; micro/nanoscale science; instrumentation for biomedical applications
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
US Naval Research Laboratory, 4555 Overlook Ac SW, Washington, DC 20375, USA
Interests: bionanotechnology; nanoparticle; energy transfer; enzyme; kinetics; cell-free synthetic biology; biocatalysis; bioconjugation
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
Terasaki Institute for Biomedical Innovation, 1018 Westwood Blvd, Los Angeles, CA 90024, USA
Interests: bio-micro-electro-mechanical systems (BioMEMS); biomedical and implantable devices; biosensors; organs-on-a-chip; micro- and nanosensors for monitoring organs-on-a-chip; flexible electronics and sensors for wound healing; packaging and encapsulation of implantable devices; biomaterials; biofabrication
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Micromachines (ISSN 2072-666X) published the inaugural issue in 2010; it has experienced a tremendous growth in terms of the number and quality of scientific publications, and has been covered by the Science Citation Index Expanded (Web of Science), Ei Compendex, Scopus and PubMed, etc. To celebrate the 15th anniversary of Micromachines, we are currently organizing a Special Issue to commemorate this important milestone.

Micromachines is a peer-reviewed open access journal on all aspects of micro/nano-scaled structures, materials, devices, systems as well as related micro- and nanotechnology from fundamental research to applications. Its primary areas of research interests include the following:

Fundamental micro-/nano-scale multiphysics phenomena and devices;

Various materials based micro- and nano-structures, devices, systems and applications;

Micro- and nano- fabrication and manufacturing technologies;

Micro- and nano-technologies in biological, chemical, medical, environmental and energy applications.

All scholars in the community are invited to submit original articles, critical reviews, and short communications on any of the above-listed topics. Please also encourage any of your colleagues who may be interested to submit manuscripts.

We expect that this issue will attract considerable attention, as we prepare to celebrate the excellent scientific contributions and socio-economic impacts of Micromachines over the past 15 years.

Prof. Dr. Ai-Qun Liu
Prof. Dr. Nam-Trung Nguyen
Dr. Igor Medintz
Dr. Mehmet Remzi Dokmeci
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro-/nano-scale multiphysics phenomena
  • micro-/nano-scale devices
  • various materials based micro- and nano-structures, devices, systems
  • micro- and nano- fabrication and manufacturing
  • micro- and nano-technologies in biological, chemical, medical, environmental and energy applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (22 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 8489 KiB  
Article
Highly Flexible and Compressible 3D Interconnected Graphene Foam for Sensitive Pressure Detection
by Wentao Li, Jianxin Zhou, Wei Sheng, Yuxi Jia, Wenjie Xu and Tao Zhang
Micromachines 2024, 15(11), 1355; https://doi.org/10.3390/mi15111355 - 7 Nov 2024
Viewed by 542
Abstract
A flexible pressure sensor, capable of effectively detecting forces exerted on soft or deformable surfaces, has demonstrated broad application in diverse fields, including human motion tracking, health monitoring, electronic skin, and artificial intelligence systems. However, the design of convenient sensors with high sensitivity [...] Read more.
A flexible pressure sensor, capable of effectively detecting forces exerted on soft or deformable surfaces, has demonstrated broad application in diverse fields, including human motion tracking, health monitoring, electronic skin, and artificial intelligence systems. However, the design of convenient sensors with high sensitivity and excellent stability is still a great challenge. Herein, we present a multi-scale 3D graphene pressure sensor composed of two types of 3D graphene foam. The sensor exhibits a high sensitivity of 0.42 kPa−1 within the low-pressure range of 0–390 Pa and 0.012 kPa−1 within the higher-pressure range of 0.4 to 42 kPa, a rapid response time of 62 ms, and exceptional repeatability and stability exceeding 10,000 cycles. These characteristics empower the sensor to realize the sensation of a drop of water, the speed of airflow, and human movements. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

13 pages, 8119 KiB  
Article
Bessel Beam Femtosecond Laser Interaction with Fused Silica Before and After Chemical Etching: Comparison of Single Pulse, MHz-Burst, and GHz-Burst
by Théo Guilberteau, Pierre Balage, Manon Lafargue, John Lopez, Laura Gemini and Inka Manek-Hönninger
Micromachines 2024, 15(11), 1313; https://doi.org/10.3390/mi15111313 - 29 Oct 2024
Viewed by 755
Abstract
We investigate the elongated modifications resulting from a Bessel beam-shaped femtosecond laser in fused silica under three different operation modes, i.e., the single-pulse, MHz-burst, and GHz-burst regimes. The single-pulse and MHz-burst regimes show rather similar behavior in glass, featuring elongated and slightly tapered [...] Read more.
We investigate the elongated modifications resulting from a Bessel beam-shaped femtosecond laser in fused silica under three different operation modes, i.e., the single-pulse, MHz-burst, and GHz-burst regimes. The single-pulse and MHz-burst regimes show rather similar behavior in glass, featuring elongated and slightly tapered modifications. Subsequent etching with Potassium Hydroxide exhibits an etching rate and selectivity of up to 606 μm/h and 2103:1 in single-pulse operation and up to 322 μm/h and 2230:1 in the MHz-burst regime, respectively. Interestingly, in the GHz-burst mode, modification by a single burst of 50 pulses forms a taper-free hole without any etching. This constitutes a significant result paving the way for chemical-free, on-the-fly drilling of high aspect-ratio holes in glass. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

18 pages, 5782 KiB  
Article
Quasi-Optical Four-Port Acoustic Filters Based on NEMS Coupled Beam Arrays
by Richard Syms
Micromachines 2024, 15(10), 1257; https://doi.org/10.3390/mi15101257 - 14 Oct 2024
Viewed by 652
Abstract
Theoretical models are presented for quasi-optical four-port acoustic devices based on NEMS-coupled beam arrays. Analogies with coupled mode devices in microwaves, ultrasonics, optics, and electron wave optics are first reviewed, together with coupled beam filters. Power transfer between two mechanically coupled, electrostatically driven, [...] Read more.
Theoretical models are presented for quasi-optical four-port acoustic devices based on NEMS-coupled beam arrays. Analogies with coupled mode devices in microwaves, ultrasonics, optics, and electron wave optics are first reviewed, together with coupled beam filters. Power transfer between two mechanically coupled, electrostatically driven, coupled beam arrays is then demonstrated using a lumped element model, and the conditions for full power transfer are established. Four-port devices, including directional couplers and coupler filters with complementary transmission ports, are then demonstrated. Predictions are verified for realistic device layouts using the stiffness matrix method. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

16 pages, 32544 KiB  
Article
Fabrication of Buried Microchannels with Almost Circular Cross-Section Using HNA Wet Etching
by Qihui Yu, Henk-Willem Veltkamp, Remco J. Wiegerink and Joost C. Lötters
Micromachines 2024, 15(10), 1230; https://doi.org/10.3390/mi15101230 - 30 Sep 2024
Viewed by 796
Abstract
In this paper, a novel fabrication process for the realization of large, suspended microfluidic channels is presented. The method is based on Buried Channel Technology and uses a mixture of HF, HNO3, and water etchant, which has high selectivity between the [...] Read more.
In this paper, a novel fabrication process for the realization of large, suspended microfluidic channels is presented. The method is based on Buried Channel Technology and uses a mixture of HF, HNO3, and water etchant, which has high selectivity between the silicon substrate and the silicon-rich silicon nitride mask material. Metal electrodes for actuation and read-out are integrated into the fabrication process. The microfluidic channels are released from the silicon substrate to allow the vibrational movement needed for the application. The resulting microfluidic channels have a near-circular cross-section, with a diameter up to 300 μm and a channel wall thickness of 1.5 μm. The structure of a micro-Coriolis mass-flow and density sensor is fabricated with this process as an example of a possible application. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

16 pages, 3778 KiB  
Article
A Novel Sensing Method to Detect Malachite Green Contaminant on Silicon Substrate Using Nonlinear Optics
by Muhammad Ahyad, Hendradi Hardhienata, Eddwi Hesky Hasdeo, Sasfan Arman Wella, Faridah Handayasari, Husin Alatas and Muhammad Danang Birowosuto
Micromachines 2024, 15(10), 1227; https://doi.org/10.3390/mi15101227 - 30 Sep 2024
Viewed by 932
Abstract
We propose a nonlinear-optics-based nanosensor to detect malachite green (MG) contaminants on semiconductor interfaces such as silicon (Si). Applying the simplified bond hyperpolarizability model (SBHM), we simplified the second-harmonic generation (SHG) analysis of an MG-Si(111) surface and were able to validate our model [...] Read more.
We propose a nonlinear-optics-based nanosensor to detect malachite green (MG) contaminants on semiconductor interfaces such as silicon (Si). Applying the simplified bond hyperpolarizability model (SBHM), we simplified the second-harmonic generation (SHG) analysis of an MG-Si(111) surface and were able to validate our model by reproducing experimental rotational anisotropy (RA) SHG experiments. For the first time, density functional theory (DFT) calculations using ultrasoft pseudopotentials were implemented to obtain the molecular configuration and bond vector orientation required by the SBHM to investigate and predict the second-harmonic generation contribution for an MG-Si 001 surface. We show that the SBHM model significantly reduces the number of independent components in the nonlinear tensor of the MG-Si(111) interface, opening up the possibility for real-time and non-destructive contaminant detection at the nanoscale. In addition, we derive an explicit formula for the SHG far field, demonstrating its applicability for various input polarization angles. Finally, an RASHG signal can be enhanced through a simulated photonic crystal cavity up to 4000 times for more sensitivity of detection. Our work can stimulate more exploration using nonlinear optical methods to detect and analyze surface-bound contaminants, which is beneficial for environmental monitoring, especially for mitigating pollution from textile dyes, and underscores the role of nonlinear optics in real-time ambient-condition applications. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

10 pages, 1639 KiB  
Article
One-Step Dry-Etching Fabrication of Tunable Two-Hierarchical Nanostructures
by Xu Ji, Bo Wang, Zhongshan Zhang, Yuan Xiang, Haifang Yang, Ruhao Pan and Junjie Li
Micromachines 2024, 15(9), 1160; https://doi.org/10.3390/mi15091160 - 17 Sep 2024
Viewed by 891
Abstract
Two-hierarchical nanostructures, characterized by two distinct configurations along the height direction, exhibit immense potential for applications in various fields due to their significantly enhanced controllable degree compared to single-order structures. However, due to the limitations imposed by planar technology, the realization of two-hierarchical [...] Read more.
Two-hierarchical nanostructures, characterized by two distinct configurations along the height direction, exhibit immense potential for applications in various fields due to their significantly enhanced controllable degree compared to single-order structures. However, due to the limitations imposed by planar technology, the realization of two-hierarchical nanostructures encounters huge challenges. In this work, we developed a one-step etching method based on inductively coupled plasma reactive ion etching for two-hierarchical nanostructures. Thanks to the shrinking effect of the Cr mask and the generation of a passivation layer during etching, the target materials experienced two different states from vertical etching to shrink etching. Consequently, the achieved two-hierarchical nanostructure configuration features a cross-section of an upper triangle and a lower rectangle, showing higher controllable degrees compared to the one-order ones. Both the mask pattern and etching parameters play crucial roles, by which two-hierarchical structures with diversiform shapes can be constructed controllably. This method for two-hierarchical nanostructures offers advantages including excellent control over structural properties, high processing efficiency, uniformity across large areas, and universality in materials. This developed strategy not only presents a simple and rapid nanofabrication platform for realizing optoelectronic devices, but also provides innovative ideas for designing the next generation of high-performance devices. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

21 pages, 6806 KiB  
Article
Periodic Arrays of Plasmonic Ag-Coated Multiscale 3D-Structures with SERS Activity: Fabrication, Modelling and Characterisation
by Marta Lafuente, Lucas J. Kooijman, Sergio G. Rodrigo, Erwin Berenschot, Reyes Mallada, María P. Pina, Niels R. Tas and Roald M. Tiggelaar
Micromachines 2024, 15(9), 1129; https://doi.org/10.3390/mi15091129 - 4 Sep 2024
Viewed by 1202
Abstract
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present [...] Read more.
Surface enhanced Raman spectroscopy (SERS) is gaining importance as sensing tool. However, wide application of the SERS technique suffers mainly from limitations in terms of uniformity of the plasmonics structures and sensitivity for low concentrations of target analytes. In this work, we present SERS specimens based on periodic arrays of 3D-structures coated with silver, fabricated by silicon top-down micro and nanofabrication (10 mm × 10 mm footprint). Each 3D-structure is essentially an octahedron on top of a pyramid. The width of the top part—the octahedron—was varied from 0.7 µm to 5 µm. The smallest structures reached an analytical enhancement factor (AEF) of 3.9 × 107 with a relative standard deviation (RSD) below 20%. According to finite-difference time-domain (FDTD) simulations, the origin of this signal amplification lies in the strong localization of electromagnetic fields at the edges and surfaces of the octahedrons. Finally, the sensitivity of these SERS specimens was evaluated under close-to-reality conditions using a portable Raman spectrophotometer and monitoring of the three vibrational bands of 4-nitrobenzenethiol (4-NBT). Thus, this contribution deals with fabrication, characterization and simulation of multiscale 3D-structures with SERS activity. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

20 pages, 6503 KiB  
Article
Design and Validation of a Monte Carlo Method for the Implementation of Noninvasive Wearable Devices for HbA1c Estimation Considering the Skin Effect
by Tae-Ho Kwon, Shifat Hossain, Mrinmoy Sarker Turja and Ki-Doo Kim
Micromachines 2024, 15(9), 1067; https://doi.org/10.3390/mi15091067 - 24 Aug 2024
Viewed by 779
Abstract
To diagnose diabetes early or to maintain stable blood glucose levels in diabetics, blood glucose levels should be frequently checked. However, the only way to check blood glucose levels regularly is to use invasive methods, such as pricking the fingertip or using a [...] Read more.
To diagnose diabetes early or to maintain stable blood glucose levels in diabetics, blood glucose levels should be frequently checked. However, the only way to check blood glucose levels regularly is to use invasive methods, such as pricking the fingertip or using a minimally invasive patch. These invasive methods pose several problems, including being painful and potentially causing secondary infections. This study focuses on noninvasively measuring glycated hemoglobin (HbA1c) using PPG signals. In particular, the study relates to a method and a hardware design technology for removing noise that may be present in a PPG signal due to skin contact with a noninvasive HbA1c measurement device. The proposed HbA1c measurement device consists of the first sensor (PPG sensor) module including an optical barrier and the second sensor (cylindrical sensor) module for removing the skin effect. We have developed a Monte Carlo method to implement accurate, noninvasive HbA1c measurement by considering different skin properties among different subjects. Implementing this model in wearable devices will allow end users to not only monitor their glycated hemoglobin levels but also control diabetes with higher accuracy without needing any blood samples. This will be a groundbreaking advancement in modern wearable medical devices. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

13 pages, 31150 KiB  
Article
Innovative Integration of Dual Quantum Cascade Lasers on Silicon Photonics Platform
by Dongbo Wang, Harindra Kumar Kannojia, Pierre Jouy, Etienne Giraud, Kaspar Suter, Richard Maulini, David Gachet, Léo Hetier, Geert Van Steenberge and Bart Kuyken
Micromachines 2024, 15(8), 1055; https://doi.org/10.3390/mi15081055 - 22 Aug 2024
Viewed by 1283
Abstract
For the first time, we demonstrate the hybrid integration of dual distributed feedback (DFB) quantum cascade lasers (QCLs) on a silicon photonics platform using an innovative 3D self-aligned flip-chip assembly process. The QCL waveguide geometry was predesigned with alignment fiducials, enabling a sub-micron [...] Read more.
For the first time, we demonstrate the hybrid integration of dual distributed feedback (DFB) quantum cascade lasers (QCLs) on a silicon photonics platform using an innovative 3D self-aligned flip-chip assembly process. The QCL waveguide geometry was predesigned with alignment fiducials, enabling a sub-micron accuracy during assembly. Laser oscillation was observed at the designed wavelength of 7.2 μm, with a threshold current of 170 mA at room temperature under pulsed mode operation. The optical output power after an on-chip beam combiner reached sub-milliwatt levels under stable continuous wave operation at 15 °C. The specific packaging design miniaturized the entire light source by a factor of 100 compared with traditional free-space dual lasers module. Divergence values of 2.88 mrad along the horizontal axis and 1.84 mrad along the vertical axis were measured after packaging. Promisingly, adhering to i-line lithography and reducing the reliance on high-end flip-chip tools significantly lowers the cost per chip. This approach opens new avenues for QCL integration on silicon photonic chips, with significant implications for portable mid-infrared spectroscopy devices. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

13 pages, 5273 KiB  
Article
Hybrid Fibers with Subwavelength-Scale Liquid Core for Highly Sensitive Sensing and Enhanced Nonlinearity
by Caoyuan Wang, Ruowei Yu, Yucheng Ye, Cong Xiong, Muhammad Hanif Ahmed Khan Khushik and Limin Xiao
Micromachines 2024, 15(8), 1024; https://doi.org/10.3390/mi15081024 - 11 Aug 2024
Viewed by 787
Abstract
Interest grows in designing silicon-on-insulator slot waveguides to trap optical fields in subwavelength-scale slots and developing their optofluidic devices. However, it is worth noting that the inherent limitations of the waveguide structures may result in high optical losses and short optical paths, which [...] Read more.
Interest grows in designing silicon-on-insulator slot waveguides to trap optical fields in subwavelength-scale slots and developing their optofluidic devices. However, it is worth noting that the inherent limitations of the waveguide structures may result in high optical losses and short optical paths, which challenge the device’s performance in optofluidics. Incorporating the planar silicon-based slot waveguide concept into a silica-based hollow-core fiber can provide a perfect solution to realize an efficient optofluidic waveguide. Here, we propose a subwavelength-scale liquid-core hybrid fiber (LCHF), where the core is filled with carbon disulfide and surrounded by a silicon ring in a silica background. The waveguide properties and the Stimulated Raman Scattering (SRS) effect in the LCHF are investigated. The fraction of power inside the core of 56.3% allows for improved sensitivity in optical sensing, while the modal Raman gain of 23.60 m−1·W−1 is two times larger than that generated around a nanofiber with the interaction between the evanescent optical field and the surrounding Raman media benzene-methanol, which enables a significant low-threshold SRS effect. Moreover, this in-fiber structure features compactness, robustness, flexibility, ease of implementation in both trace sample consumption and reasonable liquid filling duration, as well as compatibility with optical fiber systems. The detailed analyses of the properties and utilizations of the LCHF suggest a promising in-fiber optofluidic platform, which provides a novel insight into optofluidic devices, optical sensing, nonlinear optics, etc. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

20 pages, 9294 KiB  
Article
Effects of Group IVA Elements on the Electrical Response of a Ge2Se3-Based Optically Gated Transistor
by Md Faisal Kabir and Kristy A. Campbell
Micromachines 2024, 15(8), 1000; https://doi.org/10.3390/mi15081000 - 1 Aug 2024
Viewed by 825
Abstract
The optically gated transistor (OGT) has been previously demonstrated as a viable selector device for memristor devices, and may enable optical addressing within cross-point arrays. The OGT current–voltage response is similar to a MOSFET device, with light activating the gate instead of voltage. [...] Read more.
The optically gated transistor (OGT) has been previously demonstrated as a viable selector device for memristor devices, and may enable optical addressing within cross-point arrays. The OGT current–voltage response is similar to a MOSFET device, with light activating the gate instead of voltage. The OGT also provides a naturally built-in compliance current for a series resistive memory element, determined by the incident light intensity on the gate, thus keeping the integrated periphery circuitry size and complexity to a minimum for a memory array. The OGT gate comprises an amorphous Ge2Se3 material that can readily be doped with other elements to alter the transistor’s electrical properties. In this work, we explore the operation of the OGT when the Ge2Se3 gate material is doped with the Group IVA elements C, Si, Sn, and Pb. The dopant atoms provide changes to the optical and electrical properties that allow key electrical properties such as the dark current, photocurrent, switching speed, and threshold voltage to be tuned. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

20 pages, 2917 KiB  
Article
Implementation of Accurate Parameter Identification for Proton Exchange Membrane Fuel Cells and Photovoltaic Cells Based on Improved Honey Badger Algorithm
by Wei-Lun Yu, Chen-Kai Wen, En-Jui Liu and Jen-Yuan Chang
Micromachines 2024, 15(8), 998; https://doi.org/10.3390/mi15080998 - 31 Jul 2024
Viewed by 827
Abstract
Predicting the system efficiency of green energy and developing forward-looking power technologies are key points to accelerating the global energy transition. This research focuses on optimizing the parameters of proton exchange membrane fuel cells (PEMFCs) and photovoltaic (PV) cells using the honey badger [...] Read more.
Predicting the system efficiency of green energy and developing forward-looking power technologies are key points to accelerating the global energy transition. This research focuses on optimizing the parameters of proton exchange membrane fuel cells (PEMFCs) and photovoltaic (PV) cells using the honey badger algorithm (HBA), a swarm intelligence algorithm, to accurately present the performance characteristics and efficiency of the systems. Although the HBA has a fast search speed, it was found that the algorithm’s search stability is relatively low. Therefore, this study also enhances the HBA’s global search capability through the rapid iterative characteristics of spiral search. This method will effectively expand the algorithm’s functional search range in a multidimensional and complex solution space. Additionally, the introduction of a sigmoid function will smoothen the algorithm’s exploration and exploitation mechanisms. To test the robustness of the proposed methodology, an extensive test was conducted using the CEC’17 benchmark functions set and real-life applications of PEMFC and PV cells. The results of the aforementioned test proved that with regard to the optimization of PEMFC and PV cell parameters, the improved HBA is significantly advantageous to the original in terms of both solving capability and speed. The results of this research study not only make definite progress in the field of bio-inspired computing but, more importantly, provide a rapid and accurate method for predicting the maximum power point for fuel cells and photovoltaic cells, offering a more efficient and intelligent solution for green energy. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

12 pages, 4809 KiB  
Article
Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network
by Merav Belenkovich, Ruth Veksler, Yevgeniy Kreinin, Tirosh Mekler, Mariane Flores, Josué Sznitman, Michael Holinstat and Netanel Korin
Micromachines 2024, 15(8), 988; https://doi.org/10.3390/mi15080988 - 31 Jul 2024
Viewed by 1141
Abstract
The microvasculature, which makes up the majority of the cardiovascular system, plays a crucial role in the process of thrombosis, with the pathological formation of blood clots inside blood vessels. Since blood microflow conditions significantly influence platelet activation and thrombosis, accurately mimicking the [...] Read more.
The microvasculature, which makes up the majority of the cardiovascular system, plays a crucial role in the process of thrombosis, with the pathological formation of blood clots inside blood vessels. Since blood microflow conditions significantly influence platelet activation and thrombosis, accurately mimicking the structure of bifurcating microvascular networks and emulating local physiological blood flow conditions are valuable for understanding blood clot formation. In this work, we present an in vitro model for blood clotting in microvessels, focusing on 3D bifurcations that align with Murray’s law, which guides vascular networks by maintaining a constant wall shear rate throughout. Using these models, we demonstrate that microvascular bifurcations act as sites facilitating thrombus formation compared to straight models. Additionally, by culturing endothelial cells on the luminal surfaces of the models, we show the potential of using our in vitro platforms to recapitulate the initial clotting in diseases involving endothelial dysfunction, such as Thrombotic Thrombocytopenic Purpura. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

12 pages, 4387 KiB  
Article
Design and Fabrication of Continuous Surface Optical Field Modulator for Angular Spectrum Discreteness Compensation
by Min Xiao, Axiu Cao, Cheng Xu, Hui Pang, Yongqi Fu and Qiling Deng
Micromachines 2024, 15(8), 952; https://doi.org/10.3390/mi15080952 - 25 Jul 2024
Viewed by 755
Abstract
The light homogenizing element is a crucial component of the illumination system of the lithography machine. Its primary purpose is to realize the uniform distribution of energy. However, it suffers from a common issue, which is angular spectrum discreteness, which significantly impacts light [...] Read more.
The light homogenizing element is a crucial component of the illumination system of the lithography machine. Its primary purpose is to realize the uniform distribution of energy. However, it suffers from a common issue, which is angular spectrum discreteness, which significantly impacts light uniformity. To address this, we design and fabricate random micro-cylindrical lens arrays to obtain a small-angle Gaussian optical field, which can compensate for the angular spectrum discreteness. By adjusting the pitches and curvature radii of the micro-cylindrical lenses separately, we are able to manipulate the divergence angle of the emitted sub-beams, enabling precise angular spectrum modulation. By using mask-moving technology, the angular spectrum modulator is fabricated to generate a Gaussian illumination field. The surface profile is measured and determined with a structural roughness below 10 nm. Furthermore, optical test experiments on the modulator have been conducted, achieving an angle error of less than 0.02° and a balance better than 0.5%. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

27 pages, 8027 KiB  
Article
On the Design, Fabrication, and Characterization of a Novel Thin-Film Electrode Array for Use in Cochlear Implants
by Gülçin Şefiye Aşkın, Sercan Gökçeli and Bilsay Sümer
Micromachines 2024, 15(7), 921; https://doi.org/10.3390/mi15070921 - 17 Jul 2024
Viewed by 2936
Abstract
Thin-film electrode arrays (TFEAs) have been developed as an alternative to conventional electrode arrays (CEAs) used in cochlear implants. However, TFEAs produced by microfabrication techniques have not yet been used clinically because their structural and mechanical properties are far from those of CEAs. [...] Read more.
Thin-film electrode arrays (TFEAs) have been developed as an alternative to conventional electrode arrays (CEAs) used in cochlear implants. However, TFEAs produced by microfabrication techniques have not yet been used clinically because their structural and mechanical properties are far from those of CEAs. The aim of this study is to design, fabricate, and investigate the mechanical and tribological behavior and evaluate the performance of different TFEA designs. Finite Element Analysis (FEA) is performed to determine the elastic properties of several designs. A custom-build experimental setup is designed to observe the tribological behavior in different speeds and environments where frictional (lateral) and vertical force (normal force) are measured on a flat surface and within artificial cochlea. According to the FEA results, the maximum stiffness of the CEA is 37.93 mN/mm and 0.363 mN/mm and TFEA-4 has a maximum stiffness of 39.08 mN/mm and 0.306 mN/mm in the longitudinal and transverse axes, respectively. It is shown experimentally that adding a dummy wire to the carrier of the EA enhances both its longitudinal and transverse stiffness, thereby postponing the initiation of dynamic sliding due to the elevated buckling limit. It is also revealed that the type of TFEA support structure affects both normal and frictional forces, as well as the coefficient of friction. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

9 pages, 3679 KiB  
Article
Bearingless Inertial Rotational Stage for Atomic Force Microscopy
by Eva Osuna, Aitor Zambudio, Pablo Ares, Cristina Gómez-Navarro and Julio Gómez-Herrero
Micromachines 2024, 15(7), 903; https://doi.org/10.3390/mi15070903 - 11 Jul 2024
Viewed by 843
Abstract
We introduce a novel rotational stage based on inertial motion, designed to be lightweight, compact, and fully compatible with atomic force microscopy (AFM) systems. Our characterization of this stage demonstrates high angular precision, achieving a maximum rotational speed of 0.083 rad/s and a [...] Read more.
We introduce a novel rotational stage based on inertial motion, designed to be lightweight, compact, and fully compatible with atomic force microscopy (AFM) systems. Our characterization of this stage demonstrates high angular precision, achieving a maximum rotational speed of 0.083 rad/s and a minimum angular step of 11.8 μrad. The stage exhibits reliable performance, maintaining continuous operation for extended periods. When tested within an AFM setup, the stage deliveres excellent results, confirming its efficacy for scanning probe microscopy studies. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

12 pages, 4795 KiB  
Article
Portable Multi-Layer Capsule-Shaped Triboelectric Generator for Human Motion Energy Harvesting
by Xinglin Yang, Da Huo, Jianye Su and Zhouyu He
Micromachines 2024, 15(7), 852; https://doi.org/10.3390/mi15070852 - 29 Jun 2024
Viewed by 684
Abstract
This paper introduces a novel portable multi-layer capsule-shaped triboelectric generator (CP-TEG), aimed at optimizing the performance of triboelectric generator technology in terms of miniaturization, modularity, and efficient energy collection. The CP-TEG utilizes a unique multi-layer, stacked structure and an elliptical cylindrical design to [...] Read more.
This paper introduces a novel portable multi-layer capsule-shaped triboelectric generator (CP-TEG), aimed at optimizing the performance of triboelectric generator technology in terms of miniaturization, modularity, and efficient energy collection. The CP-TEG utilizes a unique multi-layer, stacked structure and an elliptical cylindrical design to increase the effective frictional area and enhance power generation efficiency. Its portable design allows for flexible application in various environments and scenarios. Experimental results demonstrate that the CP-TEG can maintain stable and efficient electrical output under various motion amplitudes and frequencies, and it shows good adaptability to the direction of motion excitation. With a motion amplitude of 7 cm and a frequency of 1.94 Hz, the CP-TEG can charge a 220 μF capacitor to 1.3 V within 100 s. The power generation unit’s output voltage and current are more than three times higher than that of traditional single-layer contact-separation mode triboelectric devices. Particularly, its performance in harvesting energy from human motion underscores its effectiveness as a renewable energy solution for wearable devices. Through its innovative structural design and optimized working mechanism, the CP-TEG demonstrates excellent energy collection efficiency and application potential, offering new options for sustainable energy solutions and development. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

Review

Jump to: Research

28 pages, 38866 KiB  
Review
CMOS Point-of-Care Diagnostics Technologies: Recent Advances and Future Prospects
by Tania Moeinfard, Ebrahim Ghafar-Zadeh and Sebastian Magierowski
Micromachines 2024, 15(11), 1320; https://doi.org/10.3390/mi15111320 - 29 Oct 2024
Viewed by 842
Abstract
This review provides a comprehensive overview of point-of-care (PoC) devices across several key diagnostic applications, including blood analysis, infectious disease detection, neural interfaces, and commercialized integrated circuits (ICs). In the blood analysis section, the focus is on biomarkers such as glucose, dopamine, and [...] Read more.
This review provides a comprehensive overview of point-of-care (PoC) devices across several key diagnostic applications, including blood analysis, infectious disease detection, neural interfaces, and commercialized integrated circuits (ICs). In the blood analysis section, the focus is on biomarkers such as glucose, dopamine, and aptamers, and their respective detection techniques. The infectious disease section explores PoC technologies for detecting pathogens, RNA, and DNA, highlighting innovations in molecular diagnostics. The neural interface section reviews advancements in neural recording and stimulation for therapeutic applications. Finally, a survey of commercialized ICs from companies such as Abbott and Medtronic is presented, showcasing existing PoC devices already in widespread clinical use. This review emphasizes the role of complementary metal-oxide-semiconductor (CMOS) technology in enabling compact, efficient diagnostic systems and offers insights into the current and future landscape of PoC devices. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

16 pages, 7786 KiB  
Review
Recent Advances of PDMS In Vitro Biomodels for Flow Visualizations and Measurements: From Macro to Nanoscale Applications
by Andrews Souza, Glauco Nobrega, Lucas B. Neves, Filipe Barbosa, João Ribeiro, Conrado Ferrera and Rui A. Lima
Micromachines 2024, 15(11), 1317; https://doi.org/10.3390/mi15111317 - 29 Oct 2024
Viewed by 822
Abstract
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review [...] Read more.
Polydimethylsiloxane (PDMS) has become a popular material in microfluidic and macroscale in vitro models due to its elastomeric properties and versatility. PDMS-based biomodels are widely used in blood flow studies, offering a platform for improving flow models and validating numerical simulations. This review highlights recent advances in bioflow studies conducted using both PDMS microfluidic devices and macroscale biomodels, particularly in replicating physiological environments. PDMS microchannels are used in studies of blood cell deformation under confined conditions, demonstrating the potential to distinguish between healthy and diseased cells. PDMS also plays a critical role in fabricating arterial models from real medical images, including pathological conditions such as aneurysms. Cutting-edge applications, such as nanofluid hemodynamic studies and nanoparticle drug delivery in organ-on-a-chip platforms, represent the latest developments in PDMS research. In addition to these applications, this review critically discusses PDMS properties, fabrication methods, and its expanding role in micro- and nanoscale flow studies. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

20 pages, 4707 KiB  
Review
Optical Forces on Chiral Particles: Science and Applications
by Weicheng Yi, Haiyang Huang, Chengxing Lai, Tao He, Zhanshan Wang, Xinhua Dai, Yuzhi Shi and Xinbin Cheng
Micromachines 2024, 15(10), 1267; https://doi.org/10.3390/mi15101267 - 17 Oct 2024
Viewed by 1135
Abstract
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral [...] Read more.
Chiral particles have attracted considerable attention due to their distinctive interactions with light, which enable a variety of cutting-edge applications. This review presents a comprehensive analysis of the optical forces acting on chiral particles, categorizing them into gradient force, radiation pressure, optical lateral force, pulling force, and optical force on coupled chiral particles. We thoroughly overview the fundamental physical mechanisms underlying these forces, supported by theoretical models and experimental evidence. Additionally, we discuss the practical implications of these optical forces, highlighting their potential applications in optical manipulation, particle sorting, chiral sensing, and detection. This review aims to offer a thorough understanding of the intricate interplay between chiral particles and optical forces, laying the groundwork for future advancements in nanotechnology and photonics. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

30 pages, 22835 KiB  
Review
Ceramics for Microelectromechanical Systems Applications: A Review
by Ehsan Fallah Nia and Ammar Kouki
Micromachines 2024, 15(10), 1244; https://doi.org/10.3390/mi15101244 - 9 Oct 2024
Viewed by 2815
Abstract
A comprehensive review of the application of different ceramics for MEMS devices is presented. Main ceramics materials used for MEMS systems and devices including alumina, zirconia, aluminum Nitride, Silicon Nitride, and LTCC are introduced. Conventional and new methods of fabricating each material are [...] Read more.
A comprehensive review of the application of different ceramics for MEMS devices is presented. Main ceramics materials used for MEMS systems and devices including alumina, zirconia, aluminum Nitride, Silicon Nitride, and LTCC are introduced. Conventional and new methods of fabricating each material are explained based on the literature, along with the advantages of the new approaches, mainly additive manufacturing, i.e., 3D-printing technologies. Various manufacturing processes with relevant sub-techniques are detailed and the ones that are more suitable to have an application for MEMS devices are highlighted with their properties. In the main body of this paper, each material with its application for MEMS is categorized and explained. The majority of works are within three main classifications, including the following: (i) using ceramics as a substrate for MEMS devices to be mounted or fabricated on top of it; (ii) ceramics are a part of the materials used for an MEMS device or a monolithic fabrication of MEMS and ceramics; and finally, (iii) using ceramics as packaging solution for MEMS devices. We elaborate on how ceramics may be superior substitutes over other materials when delicate MEMS-based systems need to be assembled or packaged by a simpler fabrication process as well as their advantages when they need to operate in harsh environments. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

20 pages, 7096 KiB  
Review
Advances in Energy Harvesting Technologies for Wearable Devices
by Minki Kang and Woon-Hong Yeo
Micromachines 2024, 15(7), 884; https://doi.org/10.3390/mi15070884 - 4 Jul 2024
Cited by 1 | Viewed by 2453
Abstract
The development of wearable electronics is revolutionizing human health monitoring, intelligent robotics, and informatics. Yet the reliance on traditional batteries limits their wearability, user comfort, and continuous use. Energy harvesting technologies offer a promising power solution by converting ambient energy from the human [...] Read more.
The development of wearable electronics is revolutionizing human health monitoring, intelligent robotics, and informatics. Yet the reliance on traditional batteries limits their wearability, user comfort, and continuous use. Energy harvesting technologies offer a promising power solution by converting ambient energy from the human body or surrounding environment into electrical power. Despite their potential, current studies often focus on individual modules under specific conditions, which limits practical applicability in diverse real-world environments. Here, this review highlights the recent progress, potential, and technological challenges in energy harvesting technology and accompanying technologies to construct a practical powering module, including power management and energy storage devices for wearable device developments. Also, this paper offers perspectives on designing next-generation wearable soft electronics that enhance quality of life and foster broader adoption in various aspects of daily life. Full article
(This article belongs to the Special Issue The 15th Anniversary of Micromachines)
Show Figures

Figure 1

Back to TopTop