Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computational Fluid Dynamics (CFD)
2.2. CFD-Based Design of the Microfluidic Device
2.3. Blood Perfusion Experiments
2.3.1. Vascular Injury Model
Human Blood
Platelet Staining
2.3.2. Endothelial Cell Culture and Handling
Cell Culture and Microfluidic Cell Seeding
Endothelial Cell Stimulation
Immunofluorescence Staining
2.4. Experimental Setup
2.5. Data Analysis
3. Results
3.1. Fluid Dynamics and CFD
3.2. Clotting in Bifurcating Microvessels
3.2.1. Vascular Injury Model
3.2.2. Endothelial Dysfunction Model
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hathcock, J.J. Flow Effects on Coagulation and Thrombosis. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1729–1737. [Google Scholar] [CrossRef]
- Kushner, A.; West, W.P.; Khan Suheb, M.Z.; Pillarisetty, L.S. Virchow Triad. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Panteleev, M.A.; Korin, N.; Reesink, K.D.; Bark, D.L.; Cosemans, J.M.E.M.; Gardiner, E.E.; Mangin, P.H. Wall Shear Rates in Human and Mouse Arteries: Standardization of Hemodynamics for In Vitro Blood Flow Assays: Communication from the ISTH SSC Subcommittee on Biorheology. J. Thromb. Haemost. 2021, 19, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Mannino, R.G.; Myers, D.R.; Ahn, B.; Wang, Y.; Rollins, M.; Gole, H.; Lin, A.S.; Guldberg, R.E.; Giddens, D.P.; Timmins, L.H.; et al. Do-It-Yourself In Vitro Vasculature That Recapitulates in Vivo Geometries for Investigating Endothelial-Blood Cell Interactions. Sci. Rep. 2015, 5, 12401. [Google Scholar] [CrossRef]
- Martorell, J.; Santomá, P.; Kolandaivelu, K.; Kolachalama, V.B.; Melgar-Lesmes, P.; Molins, J.J.; Garcia, L.; Edelman, E.R.; Balcells, M. Extent of Flow Recirculation Governs Expression of Atherosclerotic and Thrombotic Biomarkers in Arterial Bifurcations. Cardiovasc. Res. 2014, 103, 37–46. [Google Scholar] [CrossRef]
- Khoury, M.; Epshtein, M.; Zidan, H.; Zukerman, H.; Korin, N. Mapping Deposition of Particles in Reconstructed Models of Human Arteries. J. Control. Release 2020, 318, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Motomiya, M.; Karino, T. Flow Patterns in the Human Carotid Artery Bifurcation. Stroke 1984, 15, 50–56. [Google Scholar] [CrossRef]
- Lakshmanan, H.H.S.; Shatzel, J.J.; Olson, S.R.; McCarty, O.J.T.; Maddala, J. Modeling the Effect of Blood Vessel Bifurcation Ratio on Occlusive Thrombus Formation. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 972–980. [Google Scholar] [CrossRef]
- García Carrascal, P.; García García, J.; Sierra Pallares, J.; Castro Ruiz, F.; Manuel Martín, F.J. Numerical Study of Blood Clots Influence on the Flow Pattern and Platelet Activation on a Stented Bifurcation Model. Ann. Biomed. Eng. 2017, 45, 1279–1291. [Google Scholar] [CrossRef] [PubMed]
- Myers, D.R.; Lam, W.A. Vascularized Microfluidics and Their Untapped Potential for Discovery in Diseases of the Microvasculature. Annu. Rev. Biomed. Eng. 2021, 23, 407–432. [Google Scholar] [CrossRef]
- Ogiwara, K.; Nogami, K.; Hosokawa, K.; Ohnishi, T.; Matsumoto, T.; Shima, M. Comprehensive Evaluation of Haemostatic Function in von Willebrand Disease Patients Using a Microchip-Based Flow Chamber System. Haemophilia 2015, 21, 71–80. [Google Scholar] [CrossRef]
- Korin, N.; Kanapathipillai, M.; Matthews, B.D.; Crescente, M.; Brill, A.; Mammoto, T.; Ghosh, K.; Jurek, S.; Bencherif, S.A.; Bhatta, D.; et al. Shear-Activated Nanotherapeutics for Drug Targeting to Obstructed Blood Vessels. Science 2012, 337, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Herbig, B.A.; Yu, X.; Diamond, S.L. Using Microfluidic Devices to Study Thrombosis in Pathological Blood Flows. Biomicrofluidics 2018, 12, 042201. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; van der Meer, A.D.; Papa, A.-L.; Barrile, R.; Lai, A.; Schlechter, B.L.; Otieno, M.A.; Louden, C.S.; Hamilton, G.A.; Michelson, A.D.; et al. Assessment of Whole Blood Thrombosis in a Microfluidic Device Lined by Fixed Human Endothelium. Biomed. Microdevices 2016, 18, 73. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Ahn, B.; Sakurai, Y.; Hansen, C.E.; Tran, R.; Mimche, P.N.; Mannino, R.G.; Ciciliano, J.C.; Lamb, T.J.; Joiner, C.H.; et al. Microvasculature-on-a-Chip for the Long-Term Study of Endothelial Barrier Dysfunction and Microvascular Obstruction in Disease. Nat. Biomed. Eng. 2018, 2, 453–463. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.; Kita, A.; Leach, J.; Rounsevell, R.; Huang, J.N.; Moake, J.; Ware, R.E.; Fletcher, D.A.; Lam, W.A. In Vitro Modeling of the Microvascular Occlusion and Thrombosis That Occur in Hematologic Diseases Using Microfluidic Technology. J. Clin. Investig. 2011, 122, 408–418. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.; López, J.A. Flow-Driven Assembly of VWF Fibres and Webs in In Vitro Microvessels. Nat. Commun. 2015, 6, 7858. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.D. The Physiological Principle of Minimum Work. Proc. Natl. Acad. Sci. USA 1926, 12, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Duffy, D.C.; Mcdonald, J.C.; Schueller, O.J.A.; Whitesides, G.M. Rapid Prototyping of Microfluidic Systems in Poly(Dimethylsiloxane). Anal. Chem. 1998, 70, 4974–4984. [Google Scholar] [CrossRef] [PubMed]
- Adili, R.; Holinstat, M. Formation and Resolution of Pial Microvascular Thrombosis in a Mouse Model of Thrombotic Thrombocytopenic Purpura. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1817–1830. [Google Scholar] [CrossRef]
- Herbig, B.A.; Diamond, S.L. Pathological VWF Fibers Resist tPA and ADAMTS13 While Promoting the Contact Pathway and Shear-Induced Platelet Activation. J. Thromb. Haemost. 2015, 13, 1699–1708. [Google Scholar] [CrossRef]
- Herbig, B.A.; Diamond, S.L. Thrombi Produced in Stagnation Point Flows Have a Core–Shell Structure. Cell. Mol. Bioeng. 2017, 10, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Yeung, J.; Li, W.; Holinstat, M. Platelet Signaling and Disease: Targeted Therapy for Thrombosis and Other Related Diseases. Pharmacol. Rev. 2018, 70, 526–548. [Google Scholar] [CrossRef] [PubMed]
- Belenkovich, M.; Sznitman, J.; Korin, N. Micro-Particle Entrapment Dynamics in Microfluidic Pulmonary Capillary Networks. J. Biomech. 2022, 137, 111082. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belenkovich, M.; Veksler, R.; Kreinin, Y.; Mekler, T.; Flores, M.; Sznitman, J.; Holinstat, M.; Korin, N. Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network. Micromachines 2024, 15, 988. https://doi.org/10.3390/mi15080988
Belenkovich M, Veksler R, Kreinin Y, Mekler T, Flores M, Sznitman J, Holinstat M, Korin N. Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network. Micromachines. 2024; 15(8):988. https://doi.org/10.3390/mi15080988
Chicago/Turabian StyleBelenkovich, Merav, Ruth Veksler, Yevgeniy Kreinin, Tirosh Mekler, Mariane Flores, Josué Sznitman, Michael Holinstat, and Netanel Korin. 2024. "Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network" Micromachines 15, no. 8: 988. https://doi.org/10.3390/mi15080988
APA StyleBelenkovich, M., Veksler, R., Kreinin, Y., Mekler, T., Flores, M., Sznitman, J., Holinstat, M., & Korin, N. (2024). Clot Accumulation in 3D Microfluidic Bifurcating Microvasculature Network. Micromachines, 15(8), 988. https://doi.org/10.3390/mi15080988