Hybrid Fibers with Subwavelength-Scale Liquid Core for Highly Sensitive Sensing and Enhanced Nonlinearity
Abstract
:1. Introduction
2. Structure and Fabrication of the LCHF
3. Waveguide Properties of the LCHF
3.1. Basic Assumptions for Simulation
3.2. Modal Intensity Distribution in the LCHF
3.3. Fraction of Power in the LCHF Core
4. Modeling of Raman Effect in the LCHF
4.1. Scheme on Raman Effect in the LCHF
4.2. Optimization for Efficient SRS in the LCHF
4.3. Power Evolution Along the LCHF
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, Q.; Almeida, V.R.; Panepucci, R.R.; Lipson, M. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 2004, 29, 1626–1628. [Google Scholar] [CrossRef]
- Almeida, V.R.; Xu, Q.; Barrios, C.A.; Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 2004, 29, 1209–1211. [Google Scholar] [CrossRef] [PubMed]
- Baehr-Jones, T.; Hochberg, M.; Wang, G.; Lawson, R.; Liao, Y.; Sullivan, P.A.; Dalton, L.; Jen, A.K.Y.; Scherer, A. Optical modulation and detection in slotted Silicon waveguides. Opt. Express 2005, 13, 5216–5226. [Google Scholar] [CrossRef] [PubMed]
- Barrios, C.A.; Lipson, M. Electrically driven silicon resonant light emitting device based on slot-waveguide. Opt. Express 2005, 13, 10092–10101. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Koshiba, M. All-optical logic gates based on nonlinear slot-waveguide couplers. J. Opt. Soc. Am. B 2006, 23, 684–691. [Google Scholar] [CrossRef]
- Fujisawa, T.; Koshiba, M. Polarization-independent optical directional coupler based on slot waveguides. Opt. Lett. 2006, 31, 56–58. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Koshiba, M. Theoretical investigation of ultrasmall polarization-insensitive multimode interference waveguides based on sandwiched structures. IEEE Photonics Technol. Lett. 2006, 18, 1246–1248. [Google Scholar] [CrossRef]
- Brand, O.; Wolftson, B.; Malka, D. A compact polarization MMI combiner using silicon slot-waveguide structures. Micromachines 2023, 14, 1203. [Google Scholar] [CrossRef]
- Katash, N.; Khateeb, S.; Malka, D. Combining four gaussian lasers using silicon nitride MMI slot waveguide structure. Micromachines 2022, 13, 1680. [Google Scholar] [CrossRef]
- Herrera, O.D.; Schneebeli, L.; Kieu, K.; Norwood, R.A.; Peyghambarian, N. Raman-induced frequency shift in CS2-filled integrated liquid-core optical fiber. Opt. Commun. 2014, 318, 83–87. [Google Scholar] [CrossRef]
- Yang, A.H.; Moore, S.D.; Schmidt, B.S.; Klug, M.; Lipson, M.; Erickson, D. Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 2009, 457, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Feng, X.; Xiao, X.; Cui, K.; Liu, F.; Huang, Y. Experimental demonstration of silicon slot waveguide with low transmission loss at 1064 nm. Opt. Commun. 2014, 329, 168–172. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, N.; Tang, Y.; Wosinski, L.; Dai, D.; He, S. Ultracompact low-loss coupler between strip and slot waveguides. Opt. Lett. 2009, 34, 1498–1500. [Google Scholar] [CrossRef] [PubMed]
- Wiederhecker, G.S.; Cordeiro, C.M.B.; Couny, F.; Benabid, F.; Maier, S.A.; Knight, J.C.; Cruz, C.H.B.; Fragnito, H.L. Field enhancement within an optical fibre with a subwavelength air core. Nat. Photonics 2007, 1, 115–118. [Google Scholar] [CrossRef]
- Ebendorff-Heidepriem, H.; Monro, T.M. Extrusion of complex preforms for microstructured optical fibers. Opt. Express 2007, 15, 15086–15092. [Google Scholar] [CrossRef] [PubMed]
- Ebendorff-Heidepriem, H.; Warren-Smith, S.C.; Monro, T.M. Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores. Opt. Express 2009, 17, 2646–2657. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.; Ebendorff-Heidepriem, H.; Afshar, S.; Monro, T.M. Light confinement within nanoholes in nanostructured optical fibers. Opt. Express 2010, 18, 26018–26026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Q.; Afshar, V.; Ebendorff-Heidepriem, H.; Monro, T.M. Record nonlinearity in optical fibre. Electron. Lett. 2008, 44, 1453–1455. [Google Scholar] [CrossRef]
- Warren-Smith, S.C.; Ebendorff-Heidepriem, H.; Foo, T.C.; Moore, R.; Davis, C.; Monro, T.M. Exposed-core microstructured optical fibers for real-time fluorescence sensing. Opt. Express 2009, 17, 18533–18542. [Google Scholar] [CrossRef]
- Peacock, A.C.; Sparks, J.R.; Healy, N. Semiconductor optical fibres: Progress and opportunities. Laser Photonics Rev. 2014, 8, 53–72. [Google Scholar] [CrossRef]
- Suhailin, F.H.; Healy, N.; Franz, Y.; Sumetsky, M.; Ballato, J.; Dibbs, A.N.; Gibson, U.J.; Peacock, A.C. Kerr nonlinear switching in a hybrid silica-silicon microspherical resonator. Opt. Express 2015, 23, 17263–17268. [Google Scholar] [CrossRef]
- Peacock, A.C. Soliton propagation in tapered silicon core fibers. Opt. Lett. 2010, 35, 3697–3699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhao, Z.; Chen, N.; Pang, F.; Chen, Z.; Liu, Y.; Wang, T. Temperature characteristics of silicon core optical fiber Fabry-Perot interferometer. Opt. Lett. 2015, 40, 1362–1365. [Google Scholar] [CrossRef]
- Kang, Z.; Xu, F.; Yuan, J.; Li, F.; Yan, B.; Zhou, X.; Wu, Q.; Wang, K.; Sang, X.; Long, K.; et al. Slow-Nonlinearity Assisted Supercontinuum Generation in a CS2-Core Photonic Crystal Fiber. IEEE J. Quantum Electron. 2019, 55, 1–9. [Google Scholar] [CrossRef]
- Junaid, S.; Bierlich, J.; Hartung, A.; Meyer, T.; Chemnitz, M.; Schmidt, M.A. Supercontinuum generation in a carbon disulfide core microstructured optical fiber. Opt. Express 2021, 29, 19891–19902. [Google Scholar] [CrossRef] [PubMed]
- Kedenburg, S.; Vieweg, M.; Gissibl, T.; Giessen, H. Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region. Opt. Mater. Express 2012, 2, 1588–1611. [Google Scholar] [CrossRef]
- Klocek, P. (Ed.) Handbook of Infrared Optical Materials; Marcel Dekker: New York, NY, USA, 1991. [Google Scholar]
- Koshiba, M.; Saitoh, K. Finite-element analysis of birefringence and dispersion properties in actual and idealized holey-fiber structures. Appl. Opt. 2003, 42, 6267–6275. [Google Scholar] [CrossRef]
- Hoo, Y.L.; Jin, W.; Shi, C.; Ho, H.L.; Wang, D.N.; Ruan, S.C. Design and modeling of a photonic crystal fiber gas sensor. Appl. Opt. 2003, 42, 3509–3515. [Google Scholar] [CrossRef]
- Daimon, M.; Masumura, A. Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region. Appl. Opt. 2007, 46, 3811–3820. [Google Scholar] [CrossRef]
- Shan, L.; Pauliat, G.; Vienne, G.; Tong, L.; Lebrun, S. Design of nanofibres for efficient stimulated Raman scattering in the evanescent field. J. Eur. Opt. Soc. Rapid Publ. 2013, 8, 13030. [Google Scholar] [CrossRef]
- Turner, M.D.; Monro, T.M.; Afshar, S. A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering. Opt. Express 2009, 17, 11565–11581. [Google Scholar] [CrossRef] [PubMed]
- Schneebeli, L.; Kieu, K.; Merzlyak, E.; Hales, J.M.; DeSimone, A.; Perry, J.W.; Norwood, R.A.; Peyghambarian, N. Measurement of the Raman gain coefficient via inverse Raman scattering. J. Opt. Soc. Am. B 2013, 30, 2930–2939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yu, R.; Ye, Y.; Xiong, C.; Ahmed Khan Khushik, M.H.; Xiao, L. Hybrid Fibers with Subwavelength-Scale Liquid Core for Highly Sensitive Sensing and Enhanced Nonlinearity. Micromachines 2024, 15, 1024. https://doi.org/10.3390/mi15081024
Wang C, Yu R, Ye Y, Xiong C, Ahmed Khan Khushik MH, Xiao L. Hybrid Fibers with Subwavelength-Scale Liquid Core for Highly Sensitive Sensing and Enhanced Nonlinearity. Micromachines. 2024; 15(8):1024. https://doi.org/10.3390/mi15081024
Chicago/Turabian StyleWang, Caoyuan, Ruowei Yu, Yucheng Ye, Cong Xiong, Muhammad Hanif Ahmed Khan Khushik, and Limin Xiao. 2024. "Hybrid Fibers with Subwavelength-Scale Liquid Core for Highly Sensitive Sensing and Enhanced Nonlinearity" Micromachines 15, no. 8: 1024. https://doi.org/10.3390/mi15081024
APA StyleWang, C., Yu, R., Ye, Y., Xiong, C., Ahmed Khan Khushik, M. H., & Xiao, L. (2024). Hybrid Fibers with Subwavelength-Scale Liquid Core for Highly Sensitive Sensing and Enhanced Nonlinearity. Micromachines, 15(8), 1024. https://doi.org/10.3390/mi15081024