Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System
Abstract
:1. Introduction
2. Magnetic Field Modeling and Current Calculation
3. Optimization Algorithm and Controller Design
3.1. APSO Algorithm
3.2. Motor Controller Design
4. Results and Analysis
4.1. Simulation Results and Analysis
- (1)
- Analysis of Tracking ResponsivenessAs shown in Figure 7, when there were no external disturbances, all three controllers exhibited good dynamic response performance, with each achieving the desired minimal overshoot. The tracking performance of the three controllers was similar. As shown in Table 2, compared to the ZN-PID and PSO-PID controllers, the setting time of the APSO-PID controller was reduced by and , respectively, indicating that the APSO-PID controller significantly outperformed the other two in terms of speed.
- (2)
- Analysis of Anti-disturbance PerformanceFigure 8 and Figure 9 show that the APSO-PID controller exhibited greater robustness under different disturbance inputs compared to the other two controllers. As shown in Table 2, under the influence of the composite disturbance signal, the APSO-PID controller reduced the setting time by and relative to the ZN-PID and PSO-PID controllers, respectively. Similarly, under the influence of the random disturbance signal, the setting time was reduced by and compared to the ZN-PID and PSO-PID controllers, respectively. This indicates that the APSO-PID controller has the best anti-disturbance performance, followed by the PSO-PID and ZN-PID controllers.
- (3)
- Analysis of Steady-State PerformanceAs shown in Table 2, all three controllers demonstrated strong steady-state performance, with steady-state error approaching 0. Considering both convergence speed and overshoot into account, the APSO-PID controller performed the best overall. As shown in Figure 8, the APSO-PID and PSO-PID controllers maintained solid steady-state performance after the disturbance signal was introduced, quickly returning to a steady state with minimal steady-state error. The APSO-PID controller yielded the smallest error. In contrast, the ZN-PID controller showed weaker steady-state performance, with significant oscillations and longer recovery times due to its higher sensitivity to disturbances. Figure 9 shows that under random disturbance signals, the APSO-PID and PSO-PID controllers continued to perform well, with almost negligible steady-state errors. However, the ZN-PID controller fell short, displaying slight deviations compared to the other two controllers.
4.2. Actual Experimental Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.; Genevriere, E.; Harker, P.; Choe, J.; Balicki, M.; Regenhardt, R.W.; Vranic, J.E.; Dmytriw, A.A.; Patel, A.B.; Zhao, X. Telerobotic neurovascular interventions with magnetic manipulation. Sci. Robot. 2022, 7, eabg9907. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Wang, Q.; Jin, D.; Chiu, P.W.; Pang, C.P.; Chong, K.L.; Zhang, L. Real-time navigation of an untethered miniature robot using mobile ultrasound imaging and magnetic actuation systems. IEEE Robot. Autom. Lett. 2022, 7, 7668–7675. [Google Scholar] [CrossRef]
- He, C.; Nguyen, R.H.; Forbrigger, C.; Drake, J.; Looi, T.; Diller, E. A hybrid steerable robot with magnetic wrist for minimally invasive epilepsy surgery. In Proceedings of the IEEE International Conference on Robotics and Automation, London, UK, 29–31 May 2023; pp. 128–134. [Google Scholar]
- Song, L.; Dai, Y.; Wang, L.; Zhang, W.; Ji, Y.; Cao, Y.; Feng, L. Motion control of capsule robot based on adaptive magnetic levitation using electromagnetic coil. IEEE Trans. Autom. Sci. Eng. 2022, 20, 2720–2731. [Google Scholar] [CrossRef]
- Wang, A.; Banerjee, S.; Barth, B.A.; Bhat, Y.M.; Chauhan, S.; Gottlieb, K.T.; Rodriguez, S. Wireless capsule endoscopy. Gastrointest. Endosc. 2013, 6, 805–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Shi, Q.; Song, S.; Meng, M.Q.H. A novel magnetic tracking approach for intrabody objects. IEEE Sens. J. 2020, 20, 4976–4984. [Google Scholar] [CrossRef]
- Meng, M.H.; Mei, T.; Pu, J.; Hu, C.; Wang, X.; Chan, Y. Wireless robotic capsule endoscopy: State-of-the-art and challenges. In Proceedings of the Fifth World Congress on Intelligent Control and Automation (IEEE Cat. No.04EX788), Hangzhou, China, 15–19 June 2004. [Google Scholar]
- Yang, L.; Yu, J.; Zhang, L. Statistics-based automated control for a swarm of paramagnetic nanoparticles in 2-D space. IEEE Trans. Robot. 2019, 36, 254–270. [Google Scholar] [CrossRef]
- Du, X.; Chan, K.F.; Xia, X.; Chiu, P.W.Y.; Zhang, L. A magnetically triggered soft capsule for on-demand mucus collection. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems, Shenzhen, China, 25–27 October 2018. [Google Scholar]
- Zhang, Y.; Zhang, L.; Yang, L.; Vong, C.I.; Chan, K.F.; Wu, W.K.; Zhang, L. Real-time tracking of fluorescent magnetic spore—Based microrobots for remote detection of C. diff toxins. Sci. Adv. 2019, 5, eaau9650. [Google Scholar] [CrossRef]
- Zhang, L.; Abbott, J.J.; Dong, L.; Kratochvil, B.E.; Bell, D.; Nelson, B.J. Artificial bacterial flagella: Fabrication and magnetic control. Appl. Phys. Lett. 2009, 94, 6. [Google Scholar] [CrossRef]
- Abbott, J.J. Parametric design of tri-axial nested Helmholtz coils. Rev. Sci. Instrum. 2015, 86, 5. [Google Scholar] [CrossRef]
- Yang, L.; Yu, E.; Vong, C.I.; Zhang, L. Discrete-time optimal control of electromagnetic coil systems for generation of dynamic magnetic fields with high accuracy. IEEE/ASME Trans. Mechatron. 2019, 24, 1208–1219. [Google Scholar] [CrossRef]
- Lee, C.; Choi, H.; Go, G.; Jeong, S.; Ko, S.Y.; Park, J.O.; Park, S. Active locomotive intestinal capsule endoscope (ALICE) system: A prospective feasibility study. IEEE/ASME Trans. Mechatron. 2014, 20, 2067–2074. [Google Scholar] [CrossRef]
- Ciuti, G.; Valdastri, P.; Menciassi, A.; Dario, P. Robotic magnetic steering and locomotion of capsule endoscope for diagnostic and surgical endoluminal procedures. Robotica 2010, 28, 199–207. [Google Scholar] [CrossRef]
- Mousavi, A.; Khaksar, H.; Ahmed, A.; Choi, H.; Hoshiar, A.K. Magnetic microrobot control using an adaptive fuzzy sliding-mode method. In Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, 23–27 October 2023; pp. 6484–6489. [Google Scholar]
- Huang, C.; Xu, T.; Wu, X. Leader–follower formation control of magnetically actuated millirobots for automatic navigation. IEEE/ASME Trans. Mechatron. 2024, 29, 1272–1282. [Google Scholar] [CrossRef]
- Zhao, H.; Lu, Y.; Becker, A.T.; Leclerc, J. Data-driven control for a milli-scale spiral-type magnetic swimmer using mpc. In Proceedings of the 2022 International Conference on Robotics and Automation, Philadelphia, PA, USA, 23–27 May 2022; pp. 9823–9830. [Google Scholar]
- Shuprajhaa, T.; Sujit, S.; Srinivasan, K. Reinforcement learning based adaptive PID controller design for control of linear/nonlinear unstable processes. Appl. Soft Comput. 2020, 128, 109450. [Google Scholar] [CrossRef]
- Xie, J.; Yang, R.; Gooi, B.; Nguyen, D. PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system. Appl. Energy 2023, 331, 120424. [Google Scholar] [CrossRef]
- Radojković, M.; Gugliandolo, G.; Latino, M.; Marinković, Z.; Crupi, G.; Donato, N. Development and Validation of an ANN-Based Approach for Temperature-Dependent Equivalent Circuit Modeling of SAW Resonators. Micromachines 2023, 14, 967. [Google Scholar] [CrossRef]
- Han, J.; Shan, X.; Liu, H.; Xiao, J.; Huang, T. Fuzzy gain scheduling PID control of a hybrid robot based on dynamic characteristics. Inf. Sci. 2023, 184, 105283. [Google Scholar] [CrossRef]
- Appana, K.; Sohaib, M. Fuzzy logic control based PID controller for step down DC-DC power converter. Int. J. Eng. Sci. 2016, 5, 751–761. [Google Scholar]
- Devaraj, D.; Selvabala, B. Real-coded genetic algorithm and fuzzy logic approach for real-time tuning of proportional–integral–derivative controller in automatic voltage regulator system. IET Gener. Transm. Distrib. 2009, 3, 641–649. [Google Scholar] [CrossRef]
- Rahayu, S.; Marif, A.; Cakan, A. Particle swarm optimization (PSO) tuning of PID control on DC motor. Int. J. Robot. Control. Syst. 2022, 14, 1054. [Google Scholar] [CrossRef]
- Zhu, H.; Li, L.; Zhao, Y.; Guo, Y.; Yang, Y. CAS algorithm-based optimum design of PID controller in AVR system. Chaos Solitons Fractals 2009, 42, 792–800. [Google Scholar] [CrossRef]
- Rajasekhar, A.; Abraham, A.; Pant, M. A hybrid differential artificial bee colony algorithm based tuning of fractional order controller for permanent magnet synchronous motor drive. Int. J. Mach. Learn. Cybern. 2014, 5, 327–337. [Google Scholar] [CrossRef]
- Safi, J.; Tezcan, S.; Eke, I.; Farhad, Z. Gravitational search algorithm (GSA) based PID controller design for two area multi-source power system load frequency control (LFC). Gazi Univ. J. Sci. 2018, 31, 139–153. [Google Scholar]
- Dou, B.; Tao, R.; Wang, Z.; Li, B.; Hao, C. Research Progress on Small-scale Magnetically Controlled Bionic Robots Based on Multi-phase Interfaces. Surf. Technol. 2021, 60, 51–65. [Google Scholar]
- Wang, L.; Meng, Q.; Lai, X. Design of a General Control Strategy for a Vertical Three-link Underactuated Manipulator. Control Theory Appl. 2020, 37, 2493–2500. [Google Scholar]
- Wang, H.; Jiang, H.; Jiang, Q. Error Analysis of Trajectory Tracking Control for Robotic Arms Based on Stretch Factor Optimization. Acta Metrol. Sin. 2020, 41, 1177–1183. [Google Scholar]
- Zhang, Q.; Li, Y.; Xu, H.; Li, X.; Zhang, X. Magnetic localization method of capsule endoscope based on hybrid model. IEEE Trans. Instrum. Meas. 2023, 72, 4003710. [Google Scholar] [CrossRef]
- Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International Conference on Evolutionary Computation Proceedings, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [Google Scholar]
- Zhang, M.; Yang, L.; Zhang, C.; Yang, Z.; Zhang, L. A 5-D large-workspace magnetic localization and actuation system based on an eye-in-hand magnetic sensor array and mobile coils. IEEE Trans. Instrum. Meas. 2023, 72, 7501411. [Google Scholar] [CrossRef]
- Ramos-Sebastian, A.; Kim, S.H. Magnetic force-propelled 3D locomotion control for magnetic microrobots via simple modified three-axis Helmholtz coil system. IEEE Access 2021, 9, 128755–128764. [Google Scholar] [CrossRef]
- Yim, S.; Sitti, M. Design and rolling locomotion of a magnetically actuated soft capsule endoscope. IEEE Trans. Robot. 2011, 28, 183–194. [Google Scholar] [CrossRef]
Item | Specifications |
---|---|
Control parameters | , , |
Parameters | Swarm size: ; Dimension: ; The maximum iteration: ; Learning factors: ; The inertia weight increases nonlinearly from: to = 0.9 in accordance with Equation (13); , , . |
Disturbance Types | Controller | Overshoot () | Setting Time () | Steady-State Error () |
---|---|---|---|---|
ZN-PID | - | 0.20259 | 0.001311 | |
No disturbance | PSO-PID | 2.6% | 0.088 | 0.000085 |
APSO-PID | 0.6% | 0.065726 | 0.000355 | |
ZN-PID | - | 0.28575 | 0.001408 | |
Composite disturbance | PSO-PID | 2.2% | 0.10422 | 0.00098 |
APSO-PID | 0.6% | 0.08061 | 0.000954 | |
ZN-PID | - | 0.182 | 0.001059 | |
Random disturbance | PSO-PID | 2.33% | 0.073 | 0.00023 |
APSO-PID | 0.545% | 0.07 | 0.000212 |
Trajectory | Controllers | RMSE (mm) | MAE (mm) |
---|---|---|---|
ZN-PID | 0.63 | 0.69 | |
Square trajectory | PSO-PID | 0.49 | 0.51 |
APSO-PID | 0.40 | 0.42 | |
ZN-PID | 0.51 | 0.58 | |
Infinity trajectory | PSO-PID | 0.41 | 0.45 |
APSO-PID | 0.32 | 0.36 | |
ZN-PID | 0.53 | 0.66 | |
Circular trajectory | PSO-PID | 0.40 | 0.49 |
APSO-PID | 0.34 | 0.40 |
Trajectory | Controllers | RMSE (mm) | MAE (mm) |
---|---|---|---|
ZN-PID | 1.40 | 1.64 | |
Square trajectory | PSO-PID | 1.34 | 1.58 |
APSO-PID | 1.27 | 1.40 | |
ZN-PID | 1.39 | 1.71 | |
Infinity trajectory | PSO-PID | 1.33 | 1.65 |
APSO-PID | 1.29 | 1.61 | |
ZN-PID | 2.30 | 2.77 | |
Circular trajectory | PSO-PID | 2.29 | 2.73 |
APSO-PID | 2.27 | 2.72 |
Trajectory | Controllers | RMSE (mm) | MAE (mm) |
---|---|---|---|
ZN-PID | 2.85 | 3.10 | |
Square trajectory | PSO-PID | 2.68 | 3.03 |
APSO-PID | 2.55 | 2.92 | |
ZN-PID | 4.17 | 4.46 | |
Infinity trajectory | PSO-PID | 4.10 | 4.39 |
APSO-PID | 4.02 | 4.23 | |
ZN-PID | 3.92 | 4.08 | |
Circular trajectory | PSO-PID | 3.79 | 3.95 |
APSO-PID | 3.64 | 3.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Zeng, D.; Xu, H.; Zhang, Q.; Liao, B. Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System. Micromachines 2024, 15, 1373. https://doi.org/10.3390/mi15111373
Li X, Zeng D, Xu H, Zhang Q, Liao B. Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System. Micromachines. 2024; 15(11):1373. https://doi.org/10.3390/mi15111373
Chicago/Turabian StyleLi, Xiao, Detian Zeng, Han Xu, Qi Zhang, and Bin Liao. 2024. "Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System" Micromachines 15, no. 11: 1373. https://doi.org/10.3390/mi15111373
APA StyleLi, X., Zeng, D., Xu, H., Zhang, Q., & Liao, B. (2024). Magnetic Actuation for Wireless Capsule Endoscopy in a Large Workspace Using a Mobile-Coil System. Micromachines, 15(11), 1373. https://doi.org/10.3390/mi15111373