Effect of Hot Junction Size on the Temperature Measurement of Proton Exchange Membrane Fuel Cells Using NiCr/NiSi Thin-Film Thermocouple Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Working Principle of Thermocouple
2.2. Temperature Measurement Structure of PEM
2.3. Preparation and Calibration of NiCr/NiSi Thin Films
3. Results and Discussion
3.1. The Temperature Measurement Results of NiCr/NiSi TFTCs with Different Hot Junction Sizes
3.2. The Effect of Hot Junction Size on the Lifespan of NiCr/NiSi TFTCs
3.3. Performance Characterization of NiCr/NiSi TFTCs
3.4. The Effect of NiCr/NiSi TFTCs Hot Junction Size on the Operating State of PEMFCs
3.5. Optimal Design of NiCr/NiSi TFTCs Hot Junction Size
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yalcinoz, T.; Alam, M.S. Dynamic modeling and simulation of air-breathing proton exchange membrane fuel cell. J. Power Sources 2008, 182, 168–174. [Google Scholar] [CrossRef]
- Budak, Y.; Devrim, Y. Investigation of micro-combined heat and power application of PEM fuel cell systems. Energy Convers. Manag. 2018, 160, 486–494. [Google Scholar] [CrossRef]
- He, K.; Mao, L.; Yu, J.; Huang, W.; He, Q. Long-Term Performance Prediction of PEMFC Based on LASSO-ESN. IEEE Trans. Instrum. Meas. 2021, 70, 3511611. [Google Scholar] [CrossRef]
- Budak, Y.; Devrim, Y. Micro-cogeneration application of a high-temperature PEM fuel cell stack operated with polybenzimidazole based membranes. Int. J. Hydrogen Energy 2020, 45, 35198–35207. [Google Scholar] [CrossRef]
- Benouioua, D.; Candusso, D.; Harel, F.; Picard, P.; François, X. On the issue of the PEMFC operating fault identification: Generic analysis tool based on voltage pointwise singularity strengths. Int. J. Hydrogen Energy 2018, 43, 11606–11613. [Google Scholar] [CrossRef]
- Fan, L.; Tu, Z.; Chan, S.H. Recent development in design a state-of-art proton exchange membrane fuel cell from stack to system: Theory, integration and prospective. Int. J. Hydrogen Energy 2023, 48, 7828–7865. [Google Scholar] [CrossRef]
- Nguyen, H.Q.; Aris, A.M.; Shabani, B. PEM fuel cell heat recovery for preheating inlet air in standalone solar-hydrogen systems for telecommunication applications: An exergy analysis. Int. J. Hydrogen Energy 2016, 41, 2987–3003. [Google Scholar] [CrossRef]
- O’Connell, A.; Kelly, A.L.; Tobin, J.; Ruegg, P.L.; Gleeson, D. The effect of storage conditions on the composition and functional properties of blended bulk tank milk. J. Dairy Sci. 2017, 100, 991–1003. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, M.H.; Liu, J.X.; Nie, Z.H.; Ye, F.; Ma, C.F. Temperature distribution on anodic surface of membrane electrode assembly in proton exchange membrane fuel cell with interdigitated flow bed. J. Power Sources 2015, 273, 775–783. [Google Scholar] [CrossRef]
- Inman, K.; Wang, X.; Sangerozan, B. Development of an Optical Sensor for Temperature Measurement and Water Droplet Detection in PEMFC Gas Channels. In Proceedings of the ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology, Washington, DC, USA, 7–10 August 2011; ASMEDC: Washington, DC, USA, 2011; pp. 103–109. [Google Scholar]
- Nishimura, A.; Kamiya, S.; Okado, T.; Sato, Y.; Hirota, M.; Kolhe, M.L. Heat and mass transfer analysis in single cell of PEFC using different PEM and GDL at higher temperature. Int. J. Hydrogen Energy 2019, 44, 29631–29640. [Google Scholar] [CrossRef]
- Yuan, L.; Wang, Q.; Tang, F.; Li, B.; Ming, P.; Zhang, C. An enhanced thin-film resistance temperature detector and its application for catalyst layer surface temperature measurement inside PEMFC. eTransportation 2022, 13, 100178. [Google Scholar] [CrossRef]
- Ruan, Y.; Li, J.; Xiao, Q.; Wu, Y.; Shi, M. High-Temperature Failure Evolution Analysis of K-Type Film Thermocouples. Micromachines 2023, 14, 2070. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tian, B.; Li, L.; Lei, J.; Liu, Z.; Liu, J.; Cheng, G.; Zhao, N.; Fang, X.; Zhao, L. Thermoelectricity and antivibration properties of screen-printed nanodoped In1.35ZnO2.11/In2O3 thin-film thermocouples on alumina substrates. Ceram. Int. 2022, 48, 25747–25755. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Xue, Y. Reliability Analysis For Thin Film Thermocouple Thermal Oxidation Failure Based On Interlayer Diffusion. In Proceedings of the 2023 10th International Conference on Dependable Systems and Their Applications (DSA), Tokyo, Japan, 10–11 August 2023; IEEE: Tokyo, Japan, 2023; pp. 565–574. [Google Scholar]
- Guk, E.; Ranaweera, M.; Venkatesan, V.; Kim, J.-S. Performance and Durability of Thin Film Thermocouple Array on a Porous Electrode. Sensors 2016, 16, 1329. [Google Scholar] [CrossRef]
- Choi, H.; Datta, A.; Cheng, X.; Li, X. Microfabrication and Characterization of Metal-Embedded Thin-Film Thermomechanical Microsensors for Applications in Hostile Manufacturing Environments. J. Microelectromech. Syst. 2006, 15, 322–329. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, B.; Yu, Q.; Shi, P.; Lin, Q.; Zhao, N.; Jing, W.; Jiang, Z. Range Analysis of Thermal Stress and Optimal Design for Tungsten-Rhenium Thin Film Thermocouples Based on Ceramic Substrates. Sensors 2017, 17, 857. [Google Scholar] [CrossRef]
- Yan, J.J.; Yan, G.; Chen, H.Y.; Liu, Z.Y.; Yang, L.; Zhou, Y.C. Real-time detection of damage evolution and failure of EB-PVD thermal barrier coatings using an environmental simulator with high-temperature and high-speed rotation. Surf. Coat. Technol. 2022, 439, 128416. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, D.; Ren, W.; Shi, P.; Liu, M.; Ye, Z.; Tian, B.; Jiang, Z. Enhanced stability of ITO/In2O3 thin film thermocouples by coating Al2O3 layer. In Proceedings of the 2017 IEEE SENSORS, Glasgow, UK, 29 October–1 November 2017; IEEE: Glasgow, UK, 2017; pp. 1–3. [Google Scholar]
- Tillmann, W.; Kokalj, D.; Stangier, D.; Schöppner, V.; Malatyali, H. Effects of AlN and BCN Thin Film Multilayer Design on the Reaction Time of Ni/Ni-20Cr Thin Film Thermocouples on Thermally Sprayed Al2O3. Sensors 2019, 19, 3414. [Google Scholar] [CrossRef] [PubMed]
- Kaviany, M. Heat Transfer Physics; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Sun, Y.; Liu, Z.; Hao, Y.; Liu, J.; Wang, Q.; Wang, H.; Li, Z.; Yin, J.; Wang, H.; Jiang, W.; et al. Preliminary Investigation of Thermoelectric Electromotive Force Oscillation of NiCr/NiSi Thin Film Thermocouple in Dynamic Calibration. Small 2023, 20, 2308002. [Google Scholar] [CrossRef]
- Fraden, J. Handbook of Modern Sensors; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6465-6. [Google Scholar]
- Fraden, J. Handbook of Modern Sensors: Physics, Designs, and Applications; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-19302-1. [Google Scholar]
- Liu, Z.; Wang, Q.; Guo, S.; Wang, H.; Jiang, W.; Liu, S.; Liu, C.; Wang, N.; Cui, Y.; Ding, W. The preliminary exploration on change mechanism of Seebeck coefficient for NiCr/NiSi thin film thermocouple with different thickness. J. Alloys Compd. 2023, 931, 167573. [Google Scholar] [CrossRef]
- Porter, A. Basic Principles of Automatic Control Systems. Proc. Inst. Mech. Eng. 1948, 159, 25–45. [Google Scholar] [CrossRef]
Experimental Parameters | NiCr Film | NiSi Film | Sio2 Film |
---|---|---|---|
Target (wt.%) | Ni90Cr10 | Ni97Si3 | Si |
Target purity | 99.9% | 99.9% | 99.99% |
Target base distance (mm) | 120 | 120 | 120 |
Working gas | Ar | Ar | Ar/O2 |
Working pressure (Pa) | 0.7 | 0.7 | 0.6 |
Flow rate (sccm) | 20 | 20 | 20/10 |
Inversion time (μs) | 1 | 1 | 1 |
Pulse frequency (kHz) | 100 | 100 | 100 |
Sputtering power density (W/cm2) | 1.90 | 1.90 | 3.33 |
Film thickness (nm) | 800 ± 50 | 800 ± 50 | 1000 ± 50 |
Sputtering time (min) | 40 | 45 | 90 |
Hot Point Size | Static Calibration (μV/°C) | Dynamic Calibration (μs) |
---|---|---|
0.1 × 0.1 mm2 | 10.4 | 0.53 |
0.5 × 0.5 mm2 | 10.2 | 1.05 |
1 × 1 mm2 | 10.3 | 2.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, H.; Liu, Z.; Guo, T.; Sun, Y.; Shen, K.; Wang, B.; Cheng, Y.; Wang, Y.; Ma, T.; Wang, Z.; et al. Effect of Hot Junction Size on the Temperature Measurement of Proton Exchange Membrane Fuel Cells Using NiCr/NiSi Thin-Film Thermocouple Sensors. Micromachines 2024, 15, 1375. https://doi.org/10.3390/mi15111375
Guo H, Liu Z, Guo T, Sun Y, Shen K, Wang B, Cheng Y, Wang Y, Ma T, Wang Z, et al. Effect of Hot Junction Size on the Temperature Measurement of Proton Exchange Membrane Fuel Cells Using NiCr/NiSi Thin-Film Thermocouple Sensors. Micromachines. 2024; 15(11):1375. https://doi.org/10.3390/mi15111375
Chicago/Turabian StyleGuo, Huijin, Zhihui Liu, Tengda Guo, Yi Sun, Kai Shen, Bi Wang, Yongjun Cheng, Yuming Wang, Tiancai Ma, Zixi Wang, and et al. 2024. "Effect of Hot Junction Size on the Temperature Measurement of Proton Exchange Membrane Fuel Cells Using NiCr/NiSi Thin-Film Thermocouple Sensors" Micromachines 15, no. 11: 1375. https://doi.org/10.3390/mi15111375
APA StyleGuo, H., Liu, Z., Guo, T., Sun, Y., Shen, K., Wang, B., Cheng, Y., Wang, Y., Ma, T., Wang, Z., & Ding, W. (2024). Effect of Hot Junction Size on the Temperature Measurement of Proton Exchange Membrane Fuel Cells Using NiCr/NiSi Thin-Film Thermocouple Sensors. Micromachines, 15(11), 1375. https://doi.org/10.3390/mi15111375