An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing
Abstract
:1. Introduction
2. Methodology
2.1. Pre-Processing with Canny Edge Detection
- Apply the Sobel operator [39] to calculate the gradient’s magnitude (G) and direction () at every pixel.
- Use Non-maximum Suppression [40] to narrow edge widths to a single pixel, retaining only those pixels at the peak of the gradient magnitude.
- Apply Hysteresis thresholding to distinguish strong, weak, and non-edge pixels. This step ensures that only strong and weak pixels connected to well-defined edges are identified, i.e., true edges.
Algorithm 1: Pre-possessing |
procedure Analysis(image, feature extraction) |
GUI trackars for Canny thresholds |
Create Pre-Processing Function |
Define Pre-Processing function |
Dilation |
Morphological closing |
return closed |
while do |
if webcam is capturing video from cameras then |
load video |
else if webcam is not capturing video then |
load image from file |
Pre-Processing (image) |
2.2. Boundaries Extraction and Localization
Algorithm 2: Boundaries and Localization |
Apply Contours in the Image Preprocessed |
Find Contours |
Loop Over to Analyze Each Contour |
for
each detected contour
do do |
Contour area |
Draw contour |
Contour perimeter |
Contour approximation |
Calculate Centroid |
Apply moments function to find shapes center |
append shapes center coordinates |
2.3. Distance Estimation and Categorization
Algorithm 3: Distance and Categorization |
The order of the shapes center on the list |
Sort shapes center to list |
for (i, center) in sorted centers do |
(i + 1, center) |
Calculate Distance Between Centroids |
for
do |
= (sorted centers[][0] − sorted centers[i][0]) |
= (sorted centers[][1] − sorted centers[i][1]) |
) |
Distance Categorization |
if m then |
Classify as close distance |
else if m then |
Classify as far distance |
else |
Classify as satisfied distance |
Stack and display processed images in each stage |
Apply image stacked function |
Used image display function |
3. Experiments
4. Results
Image Analysis Algorithm Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EHD | Electrohydrodynamic |
DoD | Drop-on-Demand |
AM | Additive Manufacturing |
GUI | Graphical User Interface |
OpenCV | Open Source Computer Vision Library |
SolidWorks | Solid Modeling Computer-aided Design and Computer-aided Engineering Program |
References
- Raje, P.V.; Murmu, N.C. A review on electrohydrodynamic-inkjet printing technology. Int. J. Emerg. Technol. Adv. Eng. 2014, 4, 174–183. [Google Scholar]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Cummins, G.; Kay, R.; Terry, J.; Desmulliez, M.P.; Walton, A.J. Optimization and characterization of drop-on-demand inkjet printing process for platinum organometallic inks. In Proceedings of the 2011 IEEE 13th Electronics Packaging Technology Conference, Singapore, 7–9 December 2011; pp. 256–261. [Google Scholar]
- Khan, S.; Lorenzelli, L.; Dahiya, R.S. Technologies for printing sensors and electronics over large flexible substrates: A review. IEEE Sens. J. 2014, 15, 3164–3185. [Google Scholar] [CrossRef]
- Shah, M.A.; Lee, D.G.; Lee, B.Y.; Hur, S. Classifications and applications of inkjet printing technology: A review. IEEE Access 2021, 9, 140079–140102. [Google Scholar] [CrossRef]
- Li, H.; Yang, W.; Duan, Y.; Chen, W.; Zhang, G.; Huang, Y.; Yin, Z. Residual oscillation suppression via waveform optimization for stable electrohydrodynamic drop-on-demand printing. Addit. Manuf. 2022, 55, 102849. [Google Scholar] [CrossRef]
- He, Y.; Chen, H.; Li, L.; Liu, J.; Guo, M.; Su, Z.; Duan, B.; Zhao, Y.; Sun, D.; Hai, Z. Electrohydrodynamic Printed Ultra-micro AgNPs Thin Film Temperature Sensor. IEEE Sens. J. 2023, 23, 21018–21028. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, J.; Byun, D. Invisible metal-grid transparent electrode prepared by electrohydrodynamic (EHD) jet printing. J. Phys. D Appl. Phys. 2013, 46, 155103. [Google Scholar] [CrossRef]
- Park, J.U.; Lee, J.H.; Paik, U.; Lu, Y.; Rogers, J.A. Nanoscale patterns of oligonucleotides formed by electrohydrodynamic jet printing with applications in biosensing and nanomaterials assembly. Nano Lett. 2008, 8, 4210–4216. [Google Scholar] [CrossRef]
- Fan, X.; Yang, X.; Kong, X.; Zhang, T.; Wang, S.; Lin, Y.; Chen, Z. Recent progresses on perovskite quantum dots patterning techniques for color conversion layer in micro-LED displays. Next Nanotechnol. 2024, 5, 100045. [Google Scholar] [CrossRef]
- Kim, H.; Lin, Y.; Tseng, T.L.B. A review on quality control in additive manufacturing. Rapid Prototyp. J. 2018, 24, 645–669. [Google Scholar] [CrossRef]
- Han, Y.; Dong, J. Electrohydrodynamic printing for advanced micro/nanomanufacturing: Current progresses, opportunities, and challenges. J. Micro-Nano-Manuf. 2018, 6, 040802. [Google Scholar] [CrossRef]
- Ding, K.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Micro-LEDs, a manufacturability perspective. Appl. Sci. 2019, 9, 1206. [Google Scholar] [CrossRef]
- Park, J.; Kim, B.; Kim, S.Y.; Hwang, J. Prediction of drop-on-demand (DOD) pattern size in pulse voltage-applied electrohydrodynamic (EHD) jet printing of Ag colloid ink. Appl. Phys. A 2014, 117, 2225–2234. [Google Scholar] [CrossRef]
- Zhang, X.; Lies, B.; Lyu, H.; Qin, H. In-situ monitoring of electrohydrodynamic inkjet printing via scalar diffraction for printed droplets. J. Manuf. Syst. 2019, 53, 1–10. [Google Scholar] [CrossRef]
- Huang, Y.; Hsiang, E.L.; Deng, M.Y.; Wu, S.T. Mini-LED, Micro-LED and OLED displays: Present status and future perspectives. Light. Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef]
- Wu, Y.; Ma, J.; Su, P.; Zhang, L.; Xia, B. Full-color realization of micro-LED displays. Nanomaterials 2020, 10, 2482. [Google Scholar] [CrossRef]
- Huang, Y.M.; Chen, J.H.; Liou, Y.H.; James Singh, K.; Tsai, W.C.; Han, J.; Lin, C.J.; Kao, T.S.; Lin, C.C.; Chen, S.C.; et al. High-uniform and high-efficient color conversion nanoporous GaN-based micro-LED display with embedded quantum dots. Nanomaterials 2021, 11, 2696. [Google Scholar] [CrossRef]
- Flah, M.; Nunez, I.; Ben Chaabene, W.; Nehdi, M.L. Machine learning algorithms in civil structural health monitoring: A systematic review. Arch. Comput. Methods Eng. 2021, 28, 2621–2643. [Google Scholar] [CrossRef]
- Li, H.; Gu, Z.; He, D.; Wang, X.; Huang, J.; Mo, Y.; Li, P.; Huang, Z.; Wu, F. A lightweight improved YOLOv5s model and its deployment for detecting pitaya fruits in daytime and nighttime light-supplement environments. Comput. Electron. Agric. 2024, 220, 108914. [Google Scholar] [CrossRef]
- Jia, J.; Li, Y. Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends. Sensors 2023, 23, 8824. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Yan, G.; Wang, Y.; Hu, B. Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote Sensing Images. Remote Sens. 2023, 15, 4974. [Google Scholar] [CrossRef]
- Ganesan, P.; Sajiv, G. A comprehensive study of edge detection for image processing applications. In Proceedings of the 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 17–18 March 2017; pp. 1–6. [Google Scholar]
- Azzopardi, G.; Petkov, N. Trainable COSFIRE filters for keypoint detection and pattern recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 35, 490–503. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Chen, K.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. Proc. IEEE 2023, 111, 257–276. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image segmentation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Loy, G.; Zelinsky, A. A fast radial symmetry transform for detecting points of interest. In Proceedings of the Computer Vision—ECCV 2002: 7th European Conference on Computer Vision, Copenhagen, Denmark, 28–31 May 2002, Proceedings, Part I 7; Springer: Berlin/Heidelberg, Germany, 2002; pp. 358–368. [Google Scholar]
- Ni, J.; Singh, M.K.; Bahlmann, C. Fast radial symmetry detection under affine transformations. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 932–939. [Google Scholar] [CrossRef]
- Shriwas, R.; Bodkhe, Y.; Mane, A.; Kulkarni, R. Overview of Canny Edge Detection and Hough Transform for Lane Detection. In Proceedings of the 2024 OPJU International Technology Conference (OTCON) on Smart Computing for Innovation and Advancement in Industry 4.0, Raigarh, India, 5–7 June 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Melin, P.; Gonzalez, C.I.; Castro, J.R.; Mendoza, O.; Castillo, O. Edge-detection method for image processing based on generalized type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 2014, 22, 1515–1525. [Google Scholar] [CrossRef]
- Mittal, M.; Verma, A.; Kaur, I.; Kaur, B.; Sharma, M.; Goyal, L.M.; Roy, S.; Kim, T.H. An efficient edge detection approach to provide better edge connectivity for image analysis. IEEE Access 2019, 7, 33240–33255. [Google Scholar] [CrossRef]
- Hesar, M.E.; Masouleh, M.; Kalhor, A.; Menhaj, M.; Kashi, N. Ball tracking with a 2-DOF spherical parallel robot based on visual servoing controllers. In Proceedings of the 2014 Second RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 15–17 October 2014; pp. 292–297. [Google Scholar]
- Du, Y.; Mallajosyula, B.; Sun, D.; Chen, J.; Zhao, Z.; Rahman, M.; Quadir, M.; Jawed, M.K. A low-cost robot with autonomous recharge and navigation for weed control in fields with narrow row spacing. In Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 27 September–1 October 2021; pp. 3263–3270. [Google Scholar]
- Revathi, A.; Modi, N.A. Comparative analysis of text extraction from color images using tesseract and opencv. In Proceedings of the 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 17–19 March 2021; pp. 931–936. [Google Scholar]
- Kumain, S.C.; Singh, M.; Singh, N.; Kumar, K. An efficient Gaussian noise reduction technique for noisy images using optimized filter approach. In Proceedings of the 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC), Jalandhar, India, 15–17 December 2018; pp. 243–248. [Google Scholar]
- Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6, 679–698. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Lin, Y.B.; Wang, K. Using a canny-edge-detection based method to characterize in-plane micro-actuators. In Proceedings of the 2012 7th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Kyoto, Japan, 5–8 March 2012; pp. 729–732. [Google Scholar]
- Qu, Z.; Yang, Z.; Ru, C. Edges Detection of Nanowires and Adaptively Denoising with Deep Convolutional Neural Network from SEM Images. In Proceedings of the 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), Montreal, QC, Canada, 29–31 July 2020; pp. 146–149. [Google Scholar]
- Jin-Yu, Z.; Yan, C.; Xian-Xiang, H. Edge detection of images based on improved Sobel operator and genetic algorithms. In Proceedings of the 2009 International Conference on Image Analysis and Signal Processing, Linhai, China, 11–12 April 2009; pp. 31–35. [Google Scholar]
- Al-Furaiji, O.J.; Anh Tuan, N.; Tsviatkou, V.Y. A new fast efficient non-maximum suppression algorithm based on image segmentation. Indones. J. Electr. Eng. Comput. Sci. 2020, 19, 1062–1070. [Google Scholar] [CrossRef]
- Sreedhar, K.; Panlal, B. Enhancement of images using morphological transformation. arXiv 2012, arXiv:1203.2514. [Google Scholar] [CrossRef]
- Mandaliana, K.A.; Harsono, T.; Sigit, R. 3D Visualization and Reconstruction of Lung Cancer Images using Marching Cubes Algorithm. In Proceedings of the 2019 International Electronics Symposium (IES), Surabaya, Indonesia, 27–28 September 2019; pp. 143–147. [Google Scholar]
- Bresch, E.; Narayanan, S. Region segmentation in the frequency domain applied to upper airway real-time magnetic resonance images. IEEE Trans. Med. Imaging 2008, 28, 323–338. [Google Scholar] [CrossRef]
- Li, L.; Jiang, W. An improved Douglas-Peucker algorithm for fast curve approximation. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; Volume 4, pp. 1797–1802. [Google Scholar]
- Xu, B.; Chen, Z.; Zhu, Q.; Ge, X.; Huang, S.; Zhang, Y.; Liu, T.; Wu, D. Geometrical Segmentation of Multi-Shape Point Clouds Based on Adaptive Shape Prediction and Hybrid Voting RANSAC. Remote Sens. 2022, 14, 2024. [Google Scholar] [CrossRef]
- Amerini, I.; Ballan, L.; Caldelli, R.; Del Bimbo, A.; Del Tongo, L.; Serra, G. Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Signal Process. Image Commun. 2013, 28, 659–669. [Google Scholar] [CrossRef]
- Adorni, G.; D’Andrea, V.; Destri, G.; Mordonini, M. Shape searching in real world images: A CNN-based approach. In Proceedings of the 1996 Fourth IEEE International Workshop on Cellular Neural Networks and Their Applications Proceedings (CNNA-96), Seville, Spain, 24–26 June 1996; pp. 213–218. [Google Scholar] [CrossRef]
Dot | Radius (m) | True Area () | Estimated Dot Area () | Accuracy % |
---|---|---|---|---|
1 | 30 | 2827.4 | 2880.1 | 98.1 |
2 | 35 | 3848.4 | 3846.1 | 99.9 |
3 | 40 | 5026.5 | 4952.7 | 98.5 |
4 | 45 | 6361.7 | 6159.2 | 96.7 |
5 | 50 | 7853.9 | 7491.6 | 95.1 |
6 | 25 | 1963.5 | 2081.1 | 94.3 |
7 | 20 | 1256.6 | 1396.4 | 89.9 |
8 | 15 | 706.8 | 837.8 | 94.3 |
9 | 55 | 9503.3 | 8959.5 | 93.9 |
10 | 60 | 11,309.7 | 10,581.7 | 93.2 |
Distance from Center to Center | True Distance (m) | Estimated Distance (m) | Distance Profile | Overall Accuracy % |
---|---|---|---|---|
1–2 | 83.9 | 82.1 | Close | 97.8 |
2–3 | 97.0 | 96.1 | Close | 98.9 |
3–4 | 100.3 | 99.2 | Close | 98.8 |
4–5 | 120.1 | 117.8 | Satisfactory | 98.0 |
5–6 | 123.3 | 120.9 | Satisfactory | 97.9 |
6–7 | 90.4 | 89.9 | Close | 99.3 |
7–8 | 80.6 | 79.0 | Close | 98.0 |
8–9 | 118.4 | 116.2 | Satisfactory | 98.1 |
9–10 | 156.2 | 153.4 | Satisfactory | 98.1 |
11–12 | 136.7 | 134.8 | Satisfactory | 98.5 |
Average | 98.3 ± 0.4 |
Dot | Radius (m) | True Area () | Estimated Dot Area () | Accuracy % |
---|---|---|---|---|
1 | 12 | 452.389 | 446.114 | 98.6 |
2 | 11 | 380.1 | 375.9 | 98.9 |
3 | 10.5 | 346.3 | 342.7 | 98.9 |
4 | 10 | 314.1 | 313.2 | 99.7 |
5 | 9.5 | 283.5 | 282.7 | 99.7 |
6 | 9 | 254.4 | 255.9 | 99.4 |
7 | 8.5 | 226.9 | 227.7 | 99.6 |
8 | 8 | 201.0 | 202.1 | 99.4 |
9 | 7.5 | 176.7 | 178.4 | 99.0 |
10 | 7 | 153.9 | 155.9 | 98.6 |
11 | 6.5 | 132.7 | 136.2 | 97.3 |
12 | 6 | 113.1 | 115.8 | 97.5 |
Distance from Center to Center | Location (m) | True Distance (m) | Estimated Distance (m) | Overall Accuracy % |
---|---|---|---|---|
1–2 | (364, 438) | 37.06 | 39.02 | 94.7 |
2–3 | (436, 671) | 30.53 | 32.03 | 95.0 |
3–4 | (625, 737) | 28.10 | 29.53 | 94.9 |
4–5 | (807, 768) | 28.39 | 29.66 | 95.5 |
5–6 | (992, 756) | 34.31 | 36.09 | 94.8 |
6–7 | (1201, 671) | 39.05 | 40.86 | 95.3 |
7–8 | (1291, 432) | 38.87 | 40.73 | 95.2 |
8–9 | (1184, 201) | 25.90 | 27.19 | 95.0 |
9–10 | (1033, 123) | 29.00 | 30.29 | 95.5 |
10–11 | (844, 112) | 34.05 | 35.74 | 95.0 |
11–12 | (621, 125) | 30.15 | 31.63 | 95.0 |
12–1 | (446, 217) | 41.64 | 37.71 | 90.5 |
Average | 94.7 ± 1.2 |
Dot | Microscope Radius (m) | Microscope Area () | Area from Proposed Algorithm () | Difference in Percentage % |
---|---|---|---|---|
1 | 47.90 | 7208.75 | 6885.90 | 95.3 |
2 | 56.80 | 10,135.65 | 10,422.83 | 97.1 |
3 | 59.86 | 11,255.59 | 11,800.95 | 95.1 |
4 | 63.54 | 12,682.60 | 12,537.01 | 98.8 |
5 | 63.59 | 12,704.69 | 12,875.63 | 98.6 |
6 | 54.96 | 9490.40 | 10,051.13 | 94.4 |
7 | 57.61 | 10,428.20 | 10,419.68 | 99.9 |
8 | 58.97 | 10,856.40 | 10,790.33 | 99.3 |
9 | 72.94 | 16,715.53 | 17,123.40 | 97.5 |
10 | 78.14 | 19,182.89 | 18,756.68 | 97.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tawhari, Y.; Shukla, C.; Ren, J. An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing. Micromachines 2024, 15, 1376. https://doi.org/10.3390/mi15111376
Tawhari Y, Shukla C, Ren J. An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing. Micromachines. 2024; 15(11):1376. https://doi.org/10.3390/mi15111376
Chicago/Turabian StyleTawhari, Yahya, Charchit Shukla, and Juan Ren. 2024. "An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing" Micromachines 15, no. 11: 1376. https://doi.org/10.3390/mi15111376
APA StyleTawhari, Y., Shukla, C., & Ren, J. (2024). An Image Processing Approach to Quality Control of Drop-on-Demand Electrohydrodynamic (EHD) Printing. Micromachines, 15(11), 1376. https://doi.org/10.3390/mi15111376