Quantum Channel Extreme Bandgap AlGaN HEMT
Abstract
:1. Introduction
2. QC-HEMT Design and Key Properties
Band Diagrams and Energy States
- A.
- Breakdown field in QC-HEMT
- B.
- Electron mobility in QC-HEMT
3. Experimental Validation of QC-HEMT Breakdown Field Enhancement
3.1. Material Growth and Device Fabrication
3.2. Electrical Characterization
4. Discussion of the Experimental Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, M.A.; Kuznia, J.N.; Olson, D.T.; Schaff, W.; Burm, J.; Shur, M.S. Microwave Performance of 0.25-micron Doped Channel GaN/AlGaN Heterostructure Field Effect Transistor. Appl. Phys. Lett. 1994, 65, 1121–1123. [Google Scholar] [CrossRef]
- Wu, Y.F.; Keller, B.P.; Keller, S.; Kapolnek, D.; Kozodoy, P.; Denbaars, S.P.; Mishra, U.K. Very high breakdownvoltage and large transconductance realized on GaN heterojunction field effect transistors. Appl. Phys. Lett. 1996, 69, 1438–1440. [Google Scholar] [CrossRef]
- Shur, M.S.; Khan, M.A. AlGaN/GaN Doped Channel Heterostructure Field Effect Transistors. Phys. Scr. 1997, T69, 103–107. [Google Scholar] [CrossRef]
- Wu, Y.F.; Chavarkar, P.M.; Moore, M.; Parikh, P.; Keller, B.P.; Mishra, U.K. A 50-W AlGaN/GaN amplifier. In Proceedings of the International Electron Devices Meeting 2000. Technical Digest. IEDM (Cat. No.00CH37138), San Francisco, CA, USA, 10–13 December 2000. [Google Scholar]
- Keller, S.; Wu, Y.F.; Parish, G.; Ziang, N.; Xu, J.J.; Keller, B.P.; DenBaars, S.P.; Mishra, U.K. Galliumnitride based high power heterojunction field effect transistors: Process development and present status at UCSB. IEEE Trans. Elect. Devices 2001, 48, 552–559. [Google Scholar] [CrossRef]
- Xing, H.; Keller, S.; Wu, Y.-F.; McCarthy, L.; Smorchkova, I.P.; Buttari, D.; Coffie, R.; Green, D.S.; Parish, G.; Heikman, S.; et al. Gallium nitride based transistors. J. Phys. Condens. Matter 2001, 13, 7139–7157. [Google Scholar] [CrossRef]
- Saito, W.; Takada, Y.; Kuraguchi, M.; Tsuda, K.; Omura, I.; Ogura, T.; Ohashi, H. High breakdown voltage AlGaN–GaN power-HEMT design and high current density switching behavior. IEEE Trans. Electron Devices 2003, 50, 2528–2531. [Google Scholar] [CrossRef]
- Tipirneni, N.; Adivarahan, V.; Simin, G.; Khan, A. Silicon Dioxide Encapsulated High Voltage AlGaN/GaN HFETs for Power Switching Applications. IEEE Electron Device Lett. 2007, 28, 784–786. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Wang, J.; Shen, Y.; Du, L.; Li, Y.; Wang, Z.; Xu, S.; Zhang, J.; Hao, Y. High-Performance AlGaN Double Channel HEMTs with Improved Drain Current Density and High Breakdown Voltage. Nanoscale Res. Lett. 2020, 15, 114. [Google Scholar] [CrossRef]
- Yang, C.; Luo, X.; Sun, T.; Zhang, A.; Ouyang, D.; Deng, S.; Wei, J.; Zhang, B. High Breakdown Voltage and Low Dynamic ON-Resistance AlGaN/GaN HEMT with Fluorine Ion Implantation in SiNx Passivation Layer. Nanoscale Res. Lett. 2019, 14, 191. [Google Scholar] [CrossRef]
- Chao, P.C.; Chu, K.; Creamer, C.; Diaz, J.; Yurovchak, T.; Shur, M.; Kallaher, R.; McGray, C.; Via, G.D.; Blevins, J.D. Low-Temperature Bonded GaN-on-Diamond HEMTs with 11 W/mm Output Power at 10 GHz. IEEE Trans. Electron Devices 2015, 62, 3658–3664. [Google Scholar] [CrossRef]
- Mishra, U.; Shen, L.; Kazior, T.; Wu, Y. GaN-based RF power devices and amplifiers. Proc. IEEE 2008, 96, 287–305. [Google Scholar] [CrossRef]
- Baca, A.G.; Klein, B.A.; Wendt, J.R.; Lepkowski, S.M.; Nordquist, C.D.; Armstrong, A.M.; Allerman, A.A.; Douglas, E.A.; Kaplar, R.J. RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors with 80-nm Gates. IEEE Electron Device Lett. 2019, 40, 17. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, J.; Zhao, S.; Zhang, W.; Zhang, Y.; Duan, X.; Chen, J.; Hao, Y. More Than 3000 V Reverse Blocking Schottky-Drain AlGaN-Channel HEMTs with >230 MW/cm2 Power Figure-of-Merit. IEEE Electron Device Lett 2019, 40, 1724. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Keller, B.P.; Fini, P.; Pusl, J.; Le, M.; Nguyen, N.X.; Nguyen, C.; Widman, D.; Keller, S.; Denbaars, S.P.; et al. Short-channel Al0.5Ga0.5N/GaN MODFETs with power density > 3 W/mm at 18 GHz. Electron. Lett. 1997, 33, 1742. [Google Scholar] [CrossRef]
- Pearton, S.J.; Ren, F.; Patrick, E.; Law, M.E.; Polyakov, A.Y. Review—Ionizing Radiation Damage Effects on GaN Devices. ECS J. Solid State Sci. Technol. 2015, 5, Q35–Q60. [Google Scholar] [CrossRef]
- Sequeira, M.C.; Mattei, J.; Vazquez, H.; Djurabekova, F.; Nordlund, K.; Monnet, I.; Kluth, P.; Grygiel, C.; Zhang, S.; Alves, E.; et al. Unravelling the secrets of the resistance of GaN to strongly ionising radiation. Commun. Phys. 2021, 4, 51. [Google Scholar] [CrossRef]
- Bykhovski, A.; Gelmont, B.; Shur, M.S. The Influence of the Strain-Induced Electric Field on the Charge Distribution in GaN-AlN-GaN SIS Structure. J. Appl. Phys. 1993, 74, 6734–6739. [Google Scholar] [CrossRef]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Sierakowski, A.J.; Schaff, W.J.; Eastman, L.F.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures. J. Appl. Phys. 2000, 87, 334–344. [Google Scholar] [CrossRef]
- Yu, E.T.; Sullivan, G.J.; Asbeck, P.M.; Wang, C.D.; Qiao, D.; Lau, S.S. Measurement of piezoelectrically induced charge in GaN/AlGaN heterostructure field-effect transistors. Appl. Phys. Lett. 1997, 71, 2794–2796. [Google Scholar] [CrossRef]
- Rathore, S.U.; Dimitrijev, S.; Amini Moghadam, H.; Mohd-Yasin, F. Equations for the Electron Density of the Two-Dimensional Electron Gas in Realistic AlGaN/GaN Heterostructures. Nanomanufacturing 2021, 1, 171–175. [Google Scholar] [CrossRef]
- Levinshtein, M.E.; Rumyantsev, S.L.; Shur, M.S. (Eds.) Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, and SiGe; J. Wiley and Sons: New York, NY, USA, 2001; ISBN 0-471-35827-4. [Google Scholar]
- Zhang, J.Z.; Dyson, A.; Ridley, B.K. Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures. Phys. Rev. B 2011, 84, 155310. [Google Scholar] [CrossRef]
- Mohamed, A.; Park, K.; Bayram, C.; Dutta, M.; Stroscio, M. Confined and interface optical phonon emission in GaN/InGaN double barrier quantum well heterostructures. PLoS ONE 2019, 14, e0216630. [Google Scholar] [CrossRef] [PubMed]
- Levinshtein, M.E.; Rumyantsev, S.; Shur, M.S. (Eds.) Handbook of Semiconductor Material Parameters, Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb; World Scientific: Singapore, 1996; Volume 1, ISBN 981-02-2934-8517. [Google Scholar]
- Fu, Z.; Yamaguchi, M. Coherent Excitation of Optical Phonons in GaAs by Broadband Terahertz Pulses. Sci. Rep. 2016, 6, 38264. [Google Scholar] [CrossRef] [PubMed]
- Lockwood, D.J.; Yu, G.L.; Rowell, N.L. Optical phonon frequencies and damping in AlAs, GaP, GaAs, InP, InAs and InSb studied by oblique incidence infrared spectroscopy. Solid State Commun. 2005, 136, 404–409. [Google Scholar] [CrossRef]
- Ivanov, P.A.; Levinshtein, M.E.; Simin, G.; Hu, X.; Yang, J.; Khan, M.A.; Rumyantsev, S.L.; Shur, M.S.; Gaska, R. Drift mobility of electrons in AlGaN/GaN MOSHFET. Electron. Lett. 2001, 37, 1479–1481. [Google Scholar] [CrossRef]
- Hospodková, A.; Hájek, F.; Hubáček, T.; Gedeonová, Z.; Hubík, P.; Mareš, J.J.; Pangrác, J.; Dominec, F.; Kuldová, K.; Hulicius, E. Electron mobility in GaN layers and HEMT structure optimized by MOVPE technological parameters. J. Cryst. Growth 2023, 605, 127061. [Google Scholar] [CrossRef]
- Chang, S.-J.; Kang, H.-S.; Lee, J.-H.; Yang, J.; Bhuiyan, M.; Jo, Y.-W.; Cui, S.; Lee, J.-H.; Ma, T.-P. Investigation of channel mobility in AlGaN/GaN high-electron-mobility transistors. Jpn. J. Appl. Phys. 2016, 55, 044104. [Google Scholar] [CrossRef]
- Cordier, Y.; Hugues, M.; Lorenzini, P.; Semond, F.; Natali, F.; Massies, J. Electron mobility and transfer characteristics in AlGaN/GaN, HEMTs. Phys. Stat. Sol. (c) 2005, 2, 2720–2723. [Google Scholar] [CrossRef]
- Pengelly, R.S.; Wood, S.M.; Milligan, J.W.; Sheppard, S.T.; Pribble, W.L. A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs. IEEE Trans. Microw. Theory Tech. 2012, 60, 1764–1783. [Google Scholar] [CrossRef]
- Hospodková, A.; Hájek, F.; Hubáček, T.; Gedeonová, Z.; Hubík, P.; Hývl, M.; Pangrác, J.; Dominec, F.; Košutová, T. Electron Transport Properties in High Electron Mobility Transistor Structures Improved by V-Pit Formation on the AlGaN/GaN Interface. ACS Appl. Mater. Interfaces 2023, 15, 19646–19652. [Google Scholar] [CrossRef]
- Hájek, F.; Hospodková, A.; Hubík, P.; Gedeonová, Z.; Hubáček, T.; Pangrác, J.; Kuldová, K. Transport Properties of AlGaN/GaN HEMT Structures with Back Barrier: Impact of Dislocation Density and Improved Design. Semicond. Sci. Technol. 2021, 36, 075016. [Google Scholar] [CrossRef]
- Frayssinet, E.; Knap, W.; Lorenzini, P.; Grandjean, N.; Massies, J.; Skierbiszewski, C.; Suski, T.; Grzegory, I.; Porowski, S.; Simin, G.; et al. High electron mobility in AlGaN/GaN heterostructures grown on bulk GaN substrates. Appl. Phys. Lett. 2000, 77, 2551–2553. [Google Scholar] [CrossRef]
- Gaska, R.; Shur, M.S.; Bykhovski, A.D.; Orlov, A.O.; Snider, G.L. Electron Mobility in Modulation Doped AlGaN-GaN Heterostructures. Appl. Phys. Lett. 1999, 74, 287–289. [Google Scholar] [CrossRef]
- Azimi, A.; Azimi, M.; Shur, M.S.; O’Leary, S.K. The impact of device length on the electron’s effective mobility. J. App. Phys. 2023, 134, 125701. [Google Scholar] [CrossRef]
- Hussain, K.; Mamun, A.; Floyd, R.; Alam, M.D.; Liao, M.E.; Huynh, K.; Wang, Y.; Goorsky, M.; Chandrashekhar, M.V.; Simin, G.; et al. High figure of merit extreme bandgap Al0.87Ga0.13N-Al0.64Ga0.36N heterostructures over bulk AlN substrates. Appl. Phys. Express 2023, 16, 014005. [Google Scholar] [CrossRef]
- Mamun, A.; Hussain, K.; Floyd, R.; Alam, M.D.; Chandrashekhar, M.V.; Simin, G.; Khan, A. Al0.64Ga0.36N channel MOSHFET on single crystal bulk AlN substrate. Appl. Phys. Express 2023, 16, 061001. [Google Scholar] [CrossRef]
- Gaska, R.; Chen, C.; Yang, J.; Kuokstis, E.; Khan, A.; Tamulaitis, G.; Yilmaz, I.; Shur, M.S.; Rojo, J.C.; Schowalter, L. Deep-ultraviolet emission of AlGaN/AlN quantum wells on bulk AlN. Appl. Phys. Lett. 2002, 81, 4658–4660. [Google Scholar] [CrossRef]
- Singhal, J.; Kim, E.; Hickman, A.; Chaudhuri, R.; Cho, Y.; Xing, H.G.; Jena, D. AlN/AlGaN/AlN quantum well channel HEMTs. Appl. Phys. Lett. 2023, 122, 222106. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Chowdhury, S.; Hollis, M.A.; Jena, D.; Johnson, N.M.; Jones, K.A.; Kaplar, R.J.; Rajan, S.; Van de Walle, C.G.; Bellotti, E.; et al. Ultrawide-bandgap semiconductors: Research opportunities and challenges. Adv. Electron. Mater. 2017, 4, 1600501. [Google Scholar] [CrossRef]
- Baca, A.G.; Armstrong, A.M.; Klein, B.A.; Douglas, E.A.; Kaplar, R.J. Al-rich AlGaN based transistors. J. Vac. Sci. Technol. A 2020, 38, 020803. [Google Scholar] [CrossRef]
- Kaplar, R.J.; Allerman, A.A.; Armstrong, A.M.; Crawford, M.H.; Dickerson, J.R.; Fischer, A.J.; Baca, A.G.; Douglas, E.A. Review—Ultra-wide-bandgap AlGaN power electronic devices. ECS J. Solid State Sci. Technol. 2016, 6, Q3061–Q3066. [Google Scholar] [CrossRef]
- Chen, Y.H.; Encomendero, J.; Savant, C.; Protasenko, V.; Xing, H.G.; Jena, D. High conductivity coherently strained quantum well XHEMT heterostructures on AlN substrates with delta doping. Appl. Phys. Lett. 2024, 125, 142110. [Google Scholar] [CrossRef]
- Li, G.; Wang, R.; Guo, J.; Verma, J.; Hu, Z.; Yue, Y.; Faria, F.; Cao, Y.; Kelly, M.; Kosel, T.; et al. Ultrathin body GaN-on-insulator quantum well FETs with regrown Ohmic contactss. IEEE Electron Device Lett. 2012, 33, 661–663. [Google Scholar] [CrossRef]
- Hu, X.; Deng, J.; Pala, N.; Gaska, R.; Shur, M.S.; Chen, C.Q.; Yang, J.; Simin, G.; Khan, M.A.; Rojo, J.C.; et al. Schowalter, AlGaN/GaN Heterostructure Field Effect Transistor on Single Crystal Bulk AlN. Appl. Phys. Lett. 2003, 82, 1299–1301. [Google Scholar] [CrossRef]
- Tamulaitis, G.; Yilmaz, I.; Shur, M.S.; Gaska, R.; Chen, C.; Yang, J.; Kuokstis, E.; Khan, A.; Schujman, S.B.; Schowalter, L.J. Photoluminescence of GaN Deposited on Single Crystal Bulk AlN with Different Polarities. Appl. Phys. Lett. 2003, 83, 3507–3509. [Google Scholar] [CrossRef]
- Grandusky, J.R.; Zhong, Z.; Chen, J.; Leung, C.; Schowalter, L.J. Manufacturability of high power ultraviolet-C light emitting diodes on bulk aluminum nitride substrates. Solid-State Electron. 2012, 78, 127–130. [Google Scholar] [CrossRef]
- Nagashima, T.; Ishikawa, R.; Hitomi, T.; Yamamoto, R.; Kotani, J.; Kumagai, Y. Homoepitaxial growth of AlN on a 2-in.-diameter AlN single crystal substrate by hydride vapor phase epitaxy. J. Cryst. Growth 2020, 540, 125644. [Google Scholar] [CrossRef]
- Yao, X.; Zhang, B.; Hu, H.; Wang, Y.; Kong, Z.; Wu, Y.; Shao, Y.; Hao, X. State-of-the-art and prospective progress of growing AlN substrates by physical vapor transport. J. Cryst. Growth 2023, 617, 127276. [Google Scholar] [CrossRef]
- Xiao, S.; Shojiki, K.; Miyake, H. Thick AlN layers grown on micro-scale patterned sapphire substrates with sputter-deposited annealed AlN films by hydride vapor-phase epitaxy. J. Cryst. Growth 2021, 566–567, 126163. [Google Scholar] [CrossRef]
- Snider, G. 1D Poisson—A Program for Calculating Energy Band Diagrams for Semiconductor Structures. Available online: https://www3.nd.edu/~gsnider/ (accessed on 10 October 2023).
- Landau, L.D.; Lifshitz, L.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Shur, M.S. Introduction to Electronic Devices; J. Wiley and Sons: New York, NY, USA, 1996; ISBN 0-471-10348-9. [Google Scholar]
- Hudgins, J.L.; Simin, G.S.; Santi, E.; Khan, M.A. An Assessment of Wide bandgap Semiconductors for Power Devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef]
- Hadi, W.A.; Shur, M.S.; O’Leary, S.K. Review: Steady-state and transient electron transport within the wide energy gap compound semiconductors gallium nitride and zinc oxide: An updated and critical review, Journal of Materials Science: Materials in Electronics. J. Mater. Sci. Mater. Electron. 2014, 25, 4675–4713. [Google Scholar] [CrossRef]
- Dyakonov, M.; Shur, M.S. Consequences of space dependence of effective mass in heterostructures. J. Appl. Phys. 1998, 84, 3726. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, J.; Adivarahan, V.; Koudymov, A.; Fatima, H.; Simin, G.; Yang, J.; Khan, M.A. AlGaN/GaN/AlGaN Double Heterostructure for high power III-N FETs. Appl. Phys. Lett. 2003, 82, 4593. [Google Scholar] [CrossRef]
- Khurgin, J.; Bajaj, S.; Rajan, S. Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors. Appl. Phys. Express 2016, 9, 094101. [Google Scholar] [CrossRef]
- Rajan, S.; DenBaars, S.; Mishra, U.; Xing, H.; Jena, D. Electron mobility in graded AlGaN alloys. Appl. Phys. Lett. 2006, 88, 042103. [Google Scholar] [CrossRef]
- Yun, F.; Reshchikov, M.A.; He, L.; King, T.; Morkoç, H.; Novak, S.W.; Wei, L. Energy band bowing parameter in AlxGa1−xN alloys. J. Appl. Phys. 2002, 92, 4837–4839. [Google Scholar] [CrossRef]
- Davies, J. The Physics of Low-Dimensional Semiconductors; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Nanjo, T.; Imai, A.; Suzuki, Y.; Abe, Y.; Oishi, T.; Suita, M.; Yagyu, E.; Tokuda, Y. AlGaN Channel HEMT With Extremely High Breakdown Voltage. IEEE Trans. Electron Devices 2013, 60, 1046–1053. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; Zanoni, E. Breakdown mechanisms in AlGaN/GaN HEMTs: An overview. Jpn. J. Appl. Phys. 2014, 53, 100211. [Google Scholar] [CrossRef]
Conventional HEMT | Thin Channel QC HEMT | AlGaN/GaN/AlGaN QC-HEMT | EBG AlGaN QC-HEMT | |
---|---|---|---|---|
Channel material | GaN | GaN | GaN | Al065Ga0.35N |
Channel thickness | - | 20 Å | 500 Å | 1000 Å |
Al fraction in top/back barriers | 25% | 25%/25% | 25%/25% | 87%/87% |
Ground state E0 location above EC at VG ≈ VTH | - | 0.54 eV | 0.42 eV | 0.15 eV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shur, M.; Simin, G.; Hussain, K.; Mamun, A.; Chandrashekhar, M.V.S.; Khan, A. Quantum Channel Extreme Bandgap AlGaN HEMT. Micromachines 2024, 15, 1384. https://doi.org/10.3390/mi15111384
Shur M, Simin G, Hussain K, Mamun A, Chandrashekhar MVS, Khan A. Quantum Channel Extreme Bandgap AlGaN HEMT. Micromachines. 2024; 15(11):1384. https://doi.org/10.3390/mi15111384
Chicago/Turabian StyleShur, Michael, Grigory Simin, Kamal Hussain, Abdullah Mamun, M. V. S. Chandrashekhar, and Asif Khan. 2024. "Quantum Channel Extreme Bandgap AlGaN HEMT" Micromachines 15, no. 11: 1384. https://doi.org/10.3390/mi15111384
APA StyleShur, M., Simin, G., Hussain, K., Mamun, A., Chandrashekhar, M. V. S., & Khan, A. (2024). Quantum Channel Extreme Bandgap AlGaN HEMT. Micromachines, 15(11), 1384. https://doi.org/10.3390/mi15111384