Integrating Multiple Hierarchical Parameters to Achieve the Self-Compensation of Scale Factor in a Micro-Electromechanical System Gyroscope
Abstract
:1. Introduction
2. Description of MEMS S-Beam Vibration Ring Gyroscope
3. Temperature Sensitivity Analysis
3.1. Analysis of Scale Factor and Zero Bias Variation with Temperature
3.2. Temperature Drift Characteristics
4. Temperature Compensation Strategy
4.1. Temperature Correlation Analysis
4.2. Partial Least Squares Regression Algorithm Parameter Prediction
- (1)
- Establishment of the variable system.
- (2)
- Principal component extraction.
- (3)
- Calculation of regression coefficients.
- (4)
- Iterative regression analysis.
5. Experimental Validation
5.1. Control System Establishment
5.2. Compensation Results Test
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hongyang, H.; Bao, L.; Feng, Z.; Hongqiong, T. A fast intelligent algorithm-based positioning error suppression method for strap-down inertial navigation system. IEEE Sens. J. 2023, 23, 5278–5287. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, Z.; Zhang, W.; Chen, Q. A novel approach for attitude estimation based on MEMS inertial sensors using nonlinear complementary filters. IEEE Sens. J. 2016, 16, 3856–3864. [Google Scholar] [CrossRef]
- Passaro, V.M.N.; Cuccovillo, A.; Vaiani, L.; De Carlo, M.; Campanella, C.E. Gyroscope technology and applications: A review in the industrial perspective. Sensors 2017, 17, 2284. [Google Scholar] [CrossRef] [PubMed]
- Zhanshe, G.; Fucheng, C.; Boyu, L.; Le, C.; Chao, L.; Ke, S. Research development of silicon MEMS gyroscopes: A review. Microsyst. Technol. 2015, 21, 2053–2066. [Google Scholar] [CrossRef]
- Hosseini-Pishrobat, M.; Erkan, D.; Tatar, E. On Temperature Effects in a MEMS Ring Gyroscope. In Proceedings of the 2024 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL), Hiroshima, Japan, 25–28 March 2024; pp. 1–4. [Google Scholar]
- Hu, M.; Xing, Y.; Yu, T.; Zhong, Y.; Zhao, J.; You, W.; Wu, G.; Liu, C.; Dong, L. A Study of MEMS 3-axis Force Sensor Integrated with Self-calibration Function. In Proceedings of the 2023 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), Abu Dhabi, United Arab Emirates, 9–13 October 2023; pp. 1–5. [Google Scholar]
- Kuang, Y.; Hou, Z.; Liu, G.; Xiao, D.; Wu, X. Real-time phase compensation for scale factor nonlinearity improvement over temperature variations for MEMS gyroscope. J. Microelectromechanical Syst. 2023, 32, 305–313. [Google Scholar] [CrossRef]
- Benjamin, E.; Maimon, R.; Ronen, A.; Yichie, E.; Krylov, S. Electrostatically Actuated SOI In-Plane Motion Platform for In-Situ Calibration of Micro Gyroscopes. In Proceedings of the 2023 IEEE Sensors, Vienna, Austria, 29 October–1 November 2023; pp. 1–4. [Google Scholar]
- Cao, H.; Li, H.; Sheng, X.; Wang, S.; Yang, B.; Huang, L. A novel temperature compensation method for a MEMS gyroscope oriented on a periphery circuit. Int. J. Adv. Robot. Syst. 2013, 10, 327. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Yin, L.; Fu, Q. Design of MEMS gyroscope interface ASIC with on-chip temperature compensation. Measurement 2023, 220, 113331. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Tang, Q. Error analysis and compensation research of scale factor for MEMS gyroscope. In Proceedings of the International Symposium on Optoelectronic Technology and Application 2014: Image Processing and Pattern Recognition, Beijing, China, 13–15 May 2014; Volume 9301, pp. 195–202. [Google Scholar]
- Trusov, A.A.; Prikhodko, I.P.; Rozelle, D.M.; Meyer, A.D.; Shkel, A.M. 1 ppm precision self-calibration of scale factor in MEMS Coriolis vibratory gyroscopes. In Proceedings of the 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers & Eurosensors XXVII), Barcelona, Spain, 16–20 June 2013; pp. 2531–2534. [Google Scholar]
- Wang, M.; Cao, H.; Shen, C.; Chai, J. A novel self-calibration method and experiment of MEMS gyroscope based on virtual coriolis force. Micromachines 2018, 9, 328. [Google Scholar] [CrossRef] [PubMed]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemom. Intell. Lab. Syst. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Cui, J.; Yan, G.; Zhao, Q. Enhanced temperature stability of scale factor in MEMS gyroscope based on multi parameters fusion compensation method. Measurement 2019, 148, 106947. [Google Scholar] [CrossRef]
- Cao, H.; Liu, Y.; Kou, Z.; Zhang, Y.; Shao, X.; Gao, J.; Huang, K.; Shi, Y.; Tang, J.; Shen, C.; et al. Design, fabrication and experiment of double S-beam MEMS vibration ring gyroscope. Micromachines 2019, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Hooda, M.K.; Wadhwa, M.; Verma, S.; Nayak, M.; George, P.; Paul, A. A systematic study of DRIE process for high aspect ratio microstructuring. Vacuum 2010, 84, 1142–1148. [Google Scholar] [CrossRef]
- Cao, H.; Li, H. Investigation of a vacuum packaged MEMS gyroscope architecture’s temperature robustness. Int. J. Appl. Electromagn. Mech. 2013, 41, 495–506. [Google Scholar] [CrossRef]
- Cui, R.; Li, K.; Xu, X.; Xue, R.; Shen, C.; Shi, Y.; Cao, H.; Rihui. Design and experiment of MEMS solid-state wave gyroscope quadrature error correction system. IEEE Sens. J. 2023, 23, 16645–16655. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, W.; Yin, L.; Fu, Q.; Zhang, Y. Design of the digital interface circuit system for MEMS gyroscope. Mod. Phys. Lett. B 2022, 36, 2250127. [Google Scholar] [CrossRef]
- Greenacre, M.; Groenen, P.J.; Hastie, T.; d’Enza, A.I.; Markos, A.; Tuzhilina, E. Principal component analysis. Nat. Rev. Methods Primers 2022, 2, 100. [Google Scholar] [CrossRef]
- Etemadi, S.; Khashei, M. Etemadi multiple linear regression. Measurement 2021, 186, 110080. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, X.; Shen, Y.; Xia, C.; Liu, G.; Jin, Z.; Ma, Z. A digital control structure for Lissajous frequency-modulated mode MEMS gyroscope. IEEE Sens. J. 2022, 22, 19207–19219. [Google Scholar] [CrossRef]
- Wang, P.; Li, Q.; Zhang, Y.; Xi, X.; Wu, Y.; Wu, X.; Xiao, D. Scale factor self-calibration of MEMS gyroscopes based on the high-order harmonic extraction in nonlinear detection. IEEE Sens. J. 2022, 22, 21761–21768. [Google Scholar] [CrossRef]
- Li, W.; Xiao, D.; Wu, X.; Su, J.; Chen, Z.; Hou, Z.; Wang, X. Enhanced temperature stability of sensitivity for MEMS gyroscope based on frequency mismatch control. Microsyst. Technol. 2017, 23, 3311–3317. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, R.; Cui, R.; An, D.; Shen, C.; Bai, Y.; Cao, H. Integrating Multiple Hierarchical Parameters to Achieve the Self-Compensation of Scale Factor in a Micro-Electromechanical System Gyroscope. Micromachines 2024, 15, 1385. https://doi.org/10.3390/mi15111385
Zhou R, Cui R, An D, Shen C, Bai Y, Cao H. Integrating Multiple Hierarchical Parameters to Achieve the Self-Compensation of Scale Factor in a Micro-Electromechanical System Gyroscope. Micromachines. 2024; 15(11):1385. https://doi.org/10.3390/mi15111385
Chicago/Turabian StyleZhou, Rui, Rang Cui, Daren An, Chong Shen, Yu Bai, and Huiliang Cao. 2024. "Integrating Multiple Hierarchical Parameters to Achieve the Self-Compensation of Scale Factor in a Micro-Electromechanical System Gyroscope" Micromachines 15, no. 11: 1385. https://doi.org/10.3390/mi15111385
APA StyleZhou, R., Cui, R., An, D., Shen, C., Bai, Y., & Cao, H. (2024). Integrating Multiple Hierarchical Parameters to Achieve the Self-Compensation of Scale Factor in a Micro-Electromechanical System Gyroscope. Micromachines, 15(11), 1385. https://doi.org/10.3390/mi15111385