Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO3 Film
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Precursor Solution
2.3. Preparation of W-Mx Films
2.4. Fabrication of Electrochromic Device
2.5. Characterization
3. Results and Discussion
3.1. Structural Characterization of W-MX Films
3.2. Electrochemical Properties of the W-Mx Film
3.3. Electrochromic Properties of W-Mx Films
3.4. Fabrication of Electrochromic Device
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Deb, S.K. A novel electrophotographic system. Appl. Opt. 1969, 8, 192–195. [Google Scholar] [CrossRef] [PubMed]
- Sven, M.; Marco, S.; Martin, D.; Abdelbast, G.; Karim, Z.; Uwe, P.; Peer, L. Large-area electrochromic devices on flexible polymer substrates with high optical contrast and enhanced cycling stability. J. Adv. Mater. Technol. 2021, 6, 2000836. [Google Scholar]
- Zhu, L.; Nuo Peh, C.K.; Zhu, T.; Lim, Y.F.; Ho, G.W. Bifunctional 2D-on-2D MoO3 nanobelt/Ni(OH)2 nanosheets for supercapacitor-driven electrochromic energy storage. J. Mater. Chem. A 2017, 5, 8343–8351. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Yeo, L.P.; Ong, A.J.; Wang, Z.; Mandler, D.; Magdassi, S.; Tok, A.I.Y. Electrochromic smart glass coating on functional nano-frameworks for effective building energy conservation. Mater. Today Energy 2020, 18, 100496. [Google Scholar] [CrossRef]
- Neo, W.T.; Ye, Q.; Chua, S.J.; Xu, J. Conjugated polymer-based electrochromics: Materials, device fabrication and application prospects. J. Mater. Chem. C 2016, 4, 7364–7376. [Google Scholar] [CrossRef]
- Pan, M.; Zhou, Q.; Liu, J.; He, Q.; Gong, C.; Tang, Q.; Shen, W. Electrochromic materials containing pyridinium salt and benzoate moieties with dual-colored and long-life performance. Sol. Energy Mater. Sol. Cells 2022, 240, 111712. [Google Scholar] [CrossRef]
- Niu, J.; Wang, Y.; Zou, X.; Tan, Y.; Jia, C.; Weng, X.; Deng, L. Infrared electrochromic materials, devices and applications. Appl. Mater. Today 2021, 24, 101073. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, Y.M.; Cai, Y.; Yang, B.; Gu, C.; Zhang, S.X.A. Advances in nanomaterials for electrochromic devices. Chem. Soc. Rev. 2020, 49, 8687–8720. [Google Scholar] [CrossRef]
- Lahav, M.; Van Der Boom, M.E. Polypyridyl metallo-organic assemblies for electrochromic applications. Adv. Mater. 2018, 30, 1706641. [Google Scholar] [CrossRef]
- Wu, C.; Shao, Z.; Zhai, W.; Zhang, X.; Zhang, C.; Zhu, C.; Yu, Y.; Liu, W. Niobium tungsten oxides for electrochromic devices with long-term stability. ACS Nano 2022, 16, 2621–2628. [Google Scholar] [CrossRef]
- Hao, T.; Wang, S.; Xu, H.; Zhang, X.; Xue, J.; Liu, S.; Song, Y.; Li, Y.; Zhao, J. Stretchable electrochromic devices based on embedded WO3@AgNW Core-Shell nanowire elastic conductors. Chem. Eng. J. 2021, 426, 130840. [Google Scholar] [CrossRef]
- Mohanadas, D.; Sulaiman, Y. Recent advances in development of electroactive composite materials for electrochromic and supercapacitor applications. J. Power Sources 2022, 523, 231029. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Z.; Peng, Y.; Yang, L.; Ai, J.; Zhou, J.; Miao, L. High-performance complementary electrochromic energy storage device based on tungsten trioxide and manganese dioxide films. Sustain. Mater. Techno. 2022, 32, e00445. [Google Scholar] [CrossRef]
- Ahmad, K.; Kim, H. Fabrication of nickel-doped tungsten trioxide thin film-based highly stable flexible electrochromic devices for smart window applications. ACS Sustain. Chem. Eng. 2023, 11, 10746–10754. [Google Scholar] [CrossRef]
- Li, H.; Shi, G.; Wang, H.; Zhang, Q.; Li, Y. Self-seeded growth of nest-like hydrated tungsten trioxide film directly on FTO substrate for highly enhanced electrochromic performance. J. Mater. Chem. A 2014, 2, 11305–11310. [Google Scholar] [CrossRef]
- Pan, J.; Zheng, R.; Wang, Y.; Ye, X.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. A high-performance electrochromic device assembled with hexagonal WO3 and NiO/PB composite nanosheet electrodes towards energy storage smart window. Sol. Energy Mater. Sol. Cells 2020, 207, 110337. [Google Scholar] [CrossRef]
- Kadam, A.V. Propylene glycol-assisted seed layer-free hydrothermal synthesis of nanostructured WO3 thin films for electrochromic applications. J. Appl. Electrochem. 2016, 47, 335–342. [Google Scholar] [CrossRef]
- Pan, J.; Wang, Y.; Zheng, R.; Wang, M.; Wan, Z.; Jia, C.; Weng, X.; Xie, J.; Deng, L. Directly grown high-performance WO3 films by a novel one-step hydrothermal method with significantly improved stability for electrochromic applications. J. Mater. Chem. A 2019, 7, 13956–13967. [Google Scholar] [CrossRef]
- A Soomro, R.; Zhang, P.; Fan, B.; Wei, Y.; Xu, B. Progression in the oxidation stability of MXenes. Nano-Micro Lett. 2023, 15, 2–18. [Google Scholar] [CrossRef]
- Lotfi, R.; Naguib, M.; Yilmaz, D.E.; Nanda, J.; Duin, A.C.T. A comparative study on the oxidation of two-dimensional Ti3C2 MXene structures in different environments. J. Mater. Chem. A 2018, 6, 12733–12743. [Google Scholar] [CrossRef]
- Zhao, X.; Vashisth, A.; Blivin, J.W.; Tan, Z.; Holta, D.E.; Kotasthane, V.; Shah, S.A.; Habib, T.; Liu, S.; Lutkenhaus, J.L.; et al. pH, Nanosheet concentration, and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv. Mater. Interfaces 2020, 7, 2000845. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, J.; Wang, Y.; Zheng, R.; Liu, Q.; Shang, X.; Shao, J.; Wan, Z.; Luo, J.; Jia, C. Approach to significantly enhancing the electrochromic performance of PANi by in situ electrodeposition of the PANi@MXene composite film. ACS Appl. Mater. Interfaces 2023, 15, 58940–58954. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Inamdar, A.I.; Jo, Y.; Cho, S.; Aqueet, A.T.; Hou, A.B.; Cha, S.; Kim, T.G.; Kim, H.; Im, H. Nanofilament array embedded tungsten oxide for highly efficient electrochromic supercapacitor electrodes. J. Mater. Chem. A 2020, 8, 13459–13469. [Google Scholar] [CrossRef]
- Zhai, M.; Liu, Y.; Huang, J.; Wang, Y.; Chen, K.; Fu, Y.; Li, H. Efficient suspension plasma spray fabrication of black titanium dioxide coatings with visible light absorption performances. Ceram. Int. 2019, 45, 930–935. [Google Scholar] [CrossRef]
- Rehani, D.; Saxena, M.; Balal, M.; Barman, S.R.; Dhakate, S.R.; Sharma, S.N. Role of Eu and Fe in TiO2 for magneto-opto-electronic applications. Appl. Phys. A 2022, 128, 2–14. [Google Scholar] [CrossRef]
- Du, J.; Zhang, Z.; Yue, C.; Nie, Z.; Tan, H.; Tang, Z.; Li, N.; Xu, L.; Xu, J. Two-dimensional oxygen vacancy-doped tungsten oxide hydrate nanosheets for high-performance electrochromic device. Mater. Today Chem. 2022, 26, 101089. [Google Scholar] [CrossRef]
- Ranjbar, M.; Mahdavi, S.M.; Iraji, A. Pulsed laser deposition of W-V-O composite films: Preparation, characterization and gasochromic studies. Sol. Energy Mater. Sol. Cells 2008, 92, 878–883. [Google Scholar] [CrossRef]
- Kunyapat, T.; Xu, F.; Neate, N.; Wang, N.; Sanctis, A.D.; Russo, S.; Zhang, S.; Xia, Y.; Zhu, Y. Ce-doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance. Nanoscale 2018, 10, 4718–4726. [Google Scholar] [CrossRef]
- Mustafa, M.N.; Abdah, M.A.A.M.; Numan, A.; Sulaiman, Y.; Walvekar, R.; Khalid, M. Development of high-performance MXene/nickel cobalt phosphate nanocomposite for electrochromic energy storage system using response surface methodology. J. Energy Storage 2023, 68, 107880. [Google Scholar] [CrossRef]
- Murugesan, R.A.; Raja, K.C.N. Capacitance performance of Ti3C2Tx MXene nanosheets on alkaline and neutral electrolytes. Mater. Res. Bull. 2023, 163, 112217. [Google Scholar] [CrossRef]
- Wu, W.; Fang, H.; Ma, H.; Wu, L.; Zhang, W.; Wang, H. Correction to: Boosting transport kinetics of Ions and electrons simultaneously by Ti3C2Tx (MXene) addition for enhanced electrochromic performance. Nano-Micro Lett. 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.M.; Wang, P.C.; Yang, R.; Chen, H.B. Fast pyrolysis of silicones at low temperatures catalyzed by anatase titanium dioxide. Polym. Degrad. Stab. 2022, 182, 109387. [Google Scholar] [CrossRef]
- Patel, R.K.; Chawla, A.K.; Manna, S.; Pandey, J.K. Defluoridation of water using anatase titanium dioxide nano-powder loaded 3D printed model devise. J. Water Process Eng. 2021, 40, 101785. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, B.; Lyu, P.; Zhao, S.; Wu, X.; Zhang, S.; Li, R.; Jiang, Q.; Wang, F.; Zhao, Y.; et al. Oxygen-deficient tungsten oxide nanoflowers for dynamically tunable near-infrared light transmittance of smart windows. Nano Res. 2023, 16, 12165–12172. [Google Scholar] [CrossRef]
- Lin, C.; Chen, Y.; Chen, E. Preparation and characterization of electrochromic tungsten oxide-titania composite thin films with different tungsten/titanium ratios. Thin Solid Film. 2014, 556, 48–53. [Google Scholar] [CrossRef]
- Zhou, L.; Wei, P.; Fang, H.; Wu, W.; Wu, L.; Wang, H. Self-doped tungsten oxide films induced by in situ carbothermal reduction for high performance electrochromic devices. J. Mater. Chem. C 2020, 8, 13999–14006. [Google Scholar] [CrossRef]
- Huo, X.; Zhang, H.; Shen, W.; Miao, X.; Zhang, M.; Guo, M. Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance. J. Mater. Chem. A 2019, 7, 16867–16875. [Google Scholar] [CrossRef]
- Weng, S.; Zhang, C.; Wang, Q.; Xu, G.; Zhou, J.; Song, K.; Rogachev, A.A.; Yarmolenko, M.A.; Cao, H.; Zhang, H. In situ formation of solid electrolyte interphase for improved cyclability of electrochromic tungsten oxide thin films. Surf. Interfaces 2024, 46, 103992. [Google Scholar] [CrossRef]
- Morankar, P.J.; Amate, R.U.; Teli, A.M.; Beknalkar, S.A.; Chavan, G.T.; Ahir, N.A.; Jeon, C.W. Nanogranular advancements in molybdenum-doped tungsten oxide for superior electrochromic energy storage. J. Energy Storage 2024, 84, 110978. [Google Scholar] [CrossRef]
- Lei, Y.; Feng, K.; Zeng, A.; Yang, H.; Zhang, L.; Liu, Z. Sol-gel deposited ZnO substrate for the modulation of electrodeposited PEDOT nanostructures and enhancement of electrochromic stability. Appl. Surf. Sci. 2025, 681, 161480. [Google Scholar] [CrossRef]
- Li, X.; Chu, J.; Cheng, Y.; Yang, F.; Xiong, S. Novel prussian blue@Carbon-dots hybrid thin film: The impact of carbon-dots on material structure and electrochromic performance. Electrochim. Acta 2020, 355, 136659. [Google Scholar] [CrossRef]
- Yuan, J.; Xia, L.; Wu, Y.; Liu, Z.; Mishra, Y.K.; He, L.; Xiong, J. High durable TiO2 electrochromic films by Ni doping. J. Mater. Sci. Mater. Electron. 2024, 35, 961. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Wang, M.; Wu, W.; Tian, M.; Zhu, T. Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO3 Film. Micromachines 2024, 15, 1486. https://doi.org/10.3390/mi15121486
Wang Y, Liu Y, Wang M, Wu W, Tian M, Zhu T. Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO3 Film. Micromachines. 2024; 15(12):1486. https://doi.org/10.3390/mi15121486
Chicago/Turabian StyleWang, Yuqi, Yong Liu, Minmin Wang, Wenjun Wu, Maofei Tian, and Tao Zhu. 2024. "Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO3 Film" Micromachines 15, no. 12: 1486. https://doi.org/10.3390/mi15121486
APA StyleWang, Y., Liu, Y., Wang, M., Wu, W., Tian, M., & Zhu, T. (2024). Preparation and Performance Study of MXene-Regulated Ethylene Glycol-Induced WO3 Film. Micromachines, 15(12), 1486. https://doi.org/10.3390/mi15121486