Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries
Abstract
:1. Introduction
2. Materials Classification
2.1. NaCrO2
2.2. NaFeO2
2.3. NaCuO2
2.4. NaNiO2
2.5. NaCoO2
2.6. NaVO2
2.7. NaMnO2
3. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yabuuchi, N.; Ikeuchi, I.; Kubota, K.; Komaba, S. Thermal Stability of NaCrO2 for Rechargeable Sodium Batteries: Studies By Differential Scanning Calorimetry, and High-Temperature X-Ray Diffraction. In Proceedings of the 224th ECS Meeting, San Francisco, CA, USA, 27 October–1 November 2013. [Google Scholar]
- Wable, M.; Bal, B.; Capraz, Ö.Ö. Probing electrochemical strain generation in sodium chromium oxide (NaCrO2) cathode in Na-ion batteries during charge/discharge. Energy Adv. 2024, 3, 601–608. [Google Scholar] [CrossRef]
- Li, G.; Yue, X.; Luo, G.; Zhao, J. Electrode potential and activation energy of sodium transition-metal oxides as cathode materials for sodium batteries: A first-principles investigation. Comput. Mater. Sci. 2015, 106, 15–22. [Google Scholar] [CrossRef]
- Wang, S.; Chen, F.; He, X.-D.; Zhang, L.-M.; Chen, F.; Wang, J.-R.; Dong, J.-M.; Chen, C.-H. Self-template synthesis of NaCrO2 submicrospheres for stable sodium storage. ACS Appl. Mater. Interfaces 2021, 13, 12203–12210. [Google Scholar] [CrossRef]
- Wang, Y.; Li, W.; Hu, G.; Peng, Z.; Cao, Y.; Gao, H.; Du, K.; Goodenough, J.B. Electrochemical performance of large-grained NaCrO2 cathode materials for Na-ion batteries synthesized by decomposition of Na2Cr2O7·2H2O. Chem. Mater. 2019, 31, 5214–5223. [Google Scholar] [CrossRef]
- Fukunaga, A.; Nohira, T.; Hagiwara, R.; Numata, K.; Itani, E.; Sakai, S.; Nitta, K. Performance validation of sodium-ion batteries using an ionic liquid electrolyte. J. Appl. Electrochem. 2016, 46, 487–496. [Google Scholar] [CrossRef]
- Liang, J.; Liu, L.; Liu, X.; Meng, X.; Zeng, L.; Liu, J.; Li, J.; Shi, Z.; Yang, Y. O3-type NaCrO2 as a superior cathode material for sodium/potassium-ion batteries ensured by high structural reversibility. ACS Appl. Mater. Interfaces 2021, 13, 22635–22645. [Google Scholar] [CrossRef]
- Doi, T.; Zhao, L.; Zhou, M.; Okada, S.; Yamaki, J.-I. Quantitative studies on the thermal stability of the interface between graphite electrode and electrolyte. J. Power Sources 2008, 185, 1380–1385. [Google Scholar] [CrossRef]
- Klimpel, M.; Kovalenko, M.V.; Kravchyk, K.V. Advances and challenges of aluminum–sulfur batteries. Commun. Chem. 2022, 5, 77. [Google Scholar] [CrossRef] [PubMed]
- Mărgulescu, S.; Mărgulescu, E. Lithium Market Trends. Glob. Econ. Observ. 2016, 4, 117. [Google Scholar]
- Azevedo, M.; Baczyńska, M.; Hoffman, K.; Krauze, A. Lithium Mining: How New Production Technologies Could Fuel the Global EV Revolution; McKinsey & Company: New York, NY, USA, 2022; Volume 12. [Google Scholar]
- Gao, Y.; Wang, Z.; Lu, G. Atomistic understanding of structural evolution, ion transport and oxygen stability in layered NaFeO2. J. Mater. Chem. A. 2019, 7, 2619–2625. [Google Scholar] [CrossRef]
- Kim, J.-K.; Lim, Y.J.; Kim, H.; Cho, G.-B.; Kim, Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ. Sci. 2015, 8, 3589–3596. [Google Scholar] [CrossRef]
- Lu, Y.; Alonso, J.A.; Yi, Q.; Lu, L.; Wang, Z.L.; Sun, C. A high-performance monolithic solid-state sodium battery with Ca2+-doped Na3Zr2Si2PO12 electrolyte. Adv. Energy Mater. 2019, 9, 1901205. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Faglioni, F.; Merinov, B.V.; Goddard, W.A., III; Kozinsky, B. Factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes and recommendations to achieve improved performance. Phys. Chem. Chem. Phys. 2018, 20, 26098–26104. [Google Scholar] [CrossRef] [PubMed]
- Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 2016, 4, 10038–10069. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Yu, C.-Y.; Park, J.-S.; Jung, H.-G.; Chung, K.-Y.; Aurbach, D.; Sun, Y.-K.; Myung, S.-T. NaCrO2 cathode for high-rate sodium-ion batteries. Energy Environ. Sci. 2015, 8, 2019–2026. [Google Scholar] [CrossRef]
- Shibata, T.; Fukuzumi, Y.; Kobayashi, W.; Moritomo, Y. Fast discharge process of layered cobalt oxides due to high Na+ diffusion. Sci. Rep. 2015, 5, 9006. [Google Scholar] [CrossRef] [PubMed]
- L Li, Y.; Lu, Y.; Zhao, C.; Hu, Y.-S.; Titirici, M.-M.; Li, H.; Huang, X.; Chen, L. Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 2017, 7, 130–151. [Google Scholar] [CrossRef]
- Hirsh, H.S.; Li, Y.; Tan, D.H.S.; Zhang, M.; Zhao, E.; Meng, Y.S. Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 2020, 10, 2001274. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R.; Fukunaga, A.; Sakai, S.; Nitta, K.; Inazawa, S. Electrochemical and structural investigation of NaCrO2 as a positive electrode for sodium secondary battery using inorganic ionic liquid NaFSA–KFSA. J. Power Sources 2013, 237, 52–57. [Google Scholar] [CrossRef]
- Shen, B.; Zhan, R.; Dai, C.; Li, Y.; Hu, L.; Niu, Y.; Jiang, J.; Wang, Q.; Xu, M. Manipulating irreversible phase transition of NaCrO2 towards an effective sodium compensation additive for superior sodium-ion full cells. J. Colloid Interface Sci. 2019, 553, 524–529. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Pei, Y.; Yang, Z.; Wang, X. First-principles investigation on the structural, electronic properties and diffusion barriers of Mg/Al doped NaCoO2 as the cathode material of rechargeable sodium batteries. RSC Adv. 2015, 5, 27229–27234. [Google Scholar] [CrossRef]
- Guo, S.; Yu, H.; Jian, Z.; Liu, P.; Zhu, Y.; Guo, X.; Chen, M.; Ishida, M.; Zhou, H. A High-Capacity, Low-Cost Layered Sodium Manganese Oxide Material as Cathode for Sodium-Ion Batteries. ChemSusChem 2014, 7, 2115–2119. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J.-M.; Palacín, M.R. In search of an optimized electrolyte for Na-ion batteries. Energy Environ. Sci. 2012, 5, 8572–8583. [Google Scholar] [CrossRef]
- Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007–15028. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kim, Y.; Choi, A.; Woo, S.; Mok, D.; Choi, N.S.; Jung, Y.S.; Ryu, J.H.; Oh, S.M.; Lee, K.T. Tin phosphide as a promising anode material for Na-ion batteries. Adv. Mater. 2014, 26, 4139–4144. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, Y.; Wang, X.; Shen, X.; Kong, Q.; Yu, R.; Lu, G.; Wang, Z.; Chen, L. Iron migration and oxygen oxidation during sodium extraction from NaFeO2. Nano Energy 2018, 47, 519–526. [Google Scholar] [CrossRef]
- Wei, J.; Shaw, L.; Chen, W. First-principles comparative study of Cr migration in O3 and O/P hybrid-phased NaCrO2. Phys. Rev. Mater. 2022, 6, 095403. [Google Scholar] [CrossRef]
- Li, G.; Zhu, W. First-principles investigation on the crystal, electronic structures and diffusion barriers of F-doped NaMO2 (M= V, Cr, Co and Ni) for rechargeable Na-ion batteries. J. Solid State Chem. 2021, 302, 122440. [Google Scholar] [CrossRef]
- Sawicki, M.; Ortiz, A.L.; Luo, M.; Shaw, L.L. Structural-Defect-Controlled Electrochemical Performance of Sodium Ion Batteries with NaCrO2 Cathodes. ChemElectroChem 2017, 4, 3222–3230. [Google Scholar] [CrossRef]
- Wei, J.; Shaw, L.; Chen, W. First-principles prediction of Na diffusivity in doped NaCrO2 layered cathode materials with van der Waals interactions. J. Phys. Chem. C. 2020, 124, 12239–12248. [Google Scholar] [CrossRef]
- Zhao, C.; Yao, Z.; Wang, Q.; Li, H.; Wang, J.; Liu, M.; Ganapathy, S.; Lu, Y.; Cabana, J.; Li, B.; et al. Revealing high Na-content P2-type layered oxides as advanced sodium-ion cathodes. J. Am. Chem. Soc. 2020, 142, 5742–5750. [Google Scholar] [CrossRef]
- Bianchini, M.; Wang, J.; Clément, R.; Cede, G. A first-principles and experimental investigation of nickel solubility into the P2 NaxCoO2 sodium-ion cathode. Adv. Energy Mater. 2018, 8, 1801446. [Google Scholar] [CrossRef]
- Kubota, K.; Asari, T.; Yoshida, H.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium-ion batteries. Adv. Funct. Mater. 2016, 26, 6047–6059. [Google Scholar] [CrossRef]
- Yan, P.; Zheng, J.; Zhang, J.-G.; Wang, C. Atomic resolution structural and chemical imaging revealing the sequential migration of Ni, Co, and Mn upon the battery cycling of layered cathode. Nano Lett. 2017, 17, 3946–3951. [Google Scholar] [CrossRef]
- Tian, M.; Gao, Y.; Xiao, R.; Wang, Z.; Chen, L. Structural stability and stabilization of Li2MoO3. Phys. Chem. Chem. Phys. 2017, 19, 17538–17543. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ma, J.; Wang, Z.; Lu, G.; Chen, L. Vacancy-induced MnO6 distortion and its impacts on structural transition of Li2MnO3. Phys. Chem. Chem. Phys. 2017, 19, 7025–7031. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Han, K.; Peng, D.-N.; Kong, L.-Y.; Su, Y.; Li, H.-W.; Hu, H.-Y.; Li, J.-Y.; Wang, H.-R.; Fu, Z.-Q.; et al. Layered oxide cathodes for sodium-ion batteries: From air stability, interface chemistry to phase transition. InfoMat 2023, 5, 12422. [Google Scholar] [CrossRef]
- Jakobsen, C.L.; Andersen, B.P.; Johansen, M.; Christensen, C.K.; Drejer, A.Ø.; Karlsen, M.A.; Ravnsbæk. Structure and evolution of disordered deep-charge phases in NaxCrO2 Na-ion battery electrodes. J. Power Sources 2024, 591, 233875. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Ikeuchi, I.; Kubota, K.; Komaba, S. Thermal stability of NaxCrO2 for rechargeable sodium batteries; studies by high-temperature synchrotron X-ray diffraction. ACS Appl. Mater. Interfaces 2016, 8, 32292–32299. [Google Scholar] [CrossRef]
- Luo, M.; Ortiz, A.L.; Shaw, L.L. Enhancing the electrochemical performance of NaCrO2 through structural defect control. ACS Appl. Energy Mater. 2020, 3, 7216–7227. [Google Scholar] [CrossRef]
- Zheng, L.; Bennett, J.C.; Obrovac, M.N. Stabilizing NaCrO2 by sodium site doping with calcium. J. Electrochem. Soc. 2019, 166, A2058. [Google Scholar] [CrossRef]
- Kubota, K.; Ikeuchi, I.; Nakayama, T.; Takei, C.; Yabuuchi, N.; Shiiba, H.; Nakayama, M.; Komaba, S. New insight into structural evolution in layered NaCrO2 during electrochemical sodium extraction. J. Phys. Chem. C 2015, 119, 166–175. [Google Scholar] [CrossRef]
- Komaba, S.; Nakayama, T.; Ogata, A.; Shimizu, T.; Takei, C.; Takada, S.; Hokura, A.; Nakai, I. Electrochemically reversible sodium intercalation of layered NaNi0.5Mn0.5O2 and NaCrO2. ECS Trans. 2009, 16, 43. [Google Scholar] [CrossRef]
- Komaba, S.; Takei, C.; Nakayama, T.; Ogata, A.; Yabuuchi, N. Electrochemical intercalation activity of layered NaCrO2 vs. LiCrO2. Electrochem. Commun. 2010, 12, 355–358. [Google Scholar] [CrossRef]
- Myung, S.-T.; Komaba, S.; Hirosaki, N.; Kumagai, N.; Arai, K.; Kodama, R.; Nakai, I. Structural Investigation of Layered Li1-δMnxCr1-xO2 by XANES and In Situ XRD Measurements. J. Electrochem. Soc. 2003, 150, A1560. [Google Scholar] [CrossRef]
- Zhou, Y.-N.; Ding, J.-J.; Nam, K.-W.; Yu, X.; Bak, S.-M.; Hu, E.; Liu, J.; Bai, J.; Li, H.; Fu, Z.-W.; et al. Phase transition behavior of NaCrO2 during sodium extraction studied by synchrotron-based X-ray diffraction and absorption spectroscopy. J. Mater. Chem. A. 2013, 1, 11130–11134. [Google Scholar] [CrossRef]
- Xia, X.; Dahn, J.R. NaCrO2 is a fundamentally safe positive electrode material for sodium-ion batteries with liquid electrolytes. Electrochem. Solid-State Lett. 2011, 15, A1. [Google Scholar] [CrossRef]
- Bo, S.-H.; Li, X.; Toumar, A.J.; Ceder, G. Layered-to-rock-salt transformation in desodiated NaxCrO2 (x 0.4). Chem. Mater. 2016, 28, 1419–1429. [Google Scholar] [CrossRef]
- Jakobsen, C.L.; Brighi, M.; Andersen, B.P.; Ducrest, G.; Černý, R.; Ravnsbæk, D.B. Expanded solid-solution behavior and charge-discharge asymmetry in NaxCrO2 Na-ion battery electrodes. J. Power Sources. 2022, 535, 231317. [Google Scholar] [CrossRef]
- Tsuchiya, Y.; Takanashi, K.; Nishinobo, T.; Hokura, A.; Yonemura, M.; Matsukawa, T.; Ishigaki, T.; Yamanaka, K.; Ohta, T.; Yabuuchi, N. Layered NaxCrxTi1-xO2 as Bifunctional Electrode Materials for Rechargeable Sodium Batteries. Chem. Mater. 2016, 28, 7006–7016. [Google Scholar] [CrossRef]
- Park, W.B.; Nathan, M.G.T.; Han, S.C.; Lee, J.-W.; Sohn, K.-S.; Pyo, M. Aliovalent-doped sodium chromium oxide (Na 0.9Cr0.9Sn0.1O2 and Na0.8Cr0.9Sb0.1O2) for sodium-ion battery cathodes with high-voltage characteristics. RSC Adv. 2020, 10, 43273–43281. [Google Scholar] [CrossRef]
- Xi, K.; Chu, S.; Zhang, X.; Zhang, X.; Zhang, H.; Xu, H.; Bian, J.; Fang, T.; Guo, S.; Liu, P.; et al. A high-performance layered Cr-based cathode for sodium-ion batteries. Nano Energy 2020, 67, 104215. [Google Scholar] [CrossRef]
- Wang, S.; Chen, F.; He, H.-Y.; Zhu, Y.-R.; Liu, H.-B.; Chen, C.-H. Enhancing structural stability of NaCrO2 by Nb-substituting for sodium-ion battery. J. Alloys Compd. 2022, 925, 166690. [Google Scholar] [CrossRef]
- Wang, Y.; Cui, P.; Zhu, W.; Feng, Z.; Vigeant, M.-J.; Demers, H.; Guerfi, A.; Zaghib, K. Enhancing the electrochemical performance of an O3-NaCrO2 cathode in sodium-ion batteries by cation substitution. J. Power Sources 2019, 435, 226760. [Google Scholar] [CrossRef]
- Ikhe, A.B.; Park, W.B.; Manasi, M.; Ahn, D.; Sohn, K.-S.; Pyo, M. Unprecedented cyclability and moisture durability of NaCrO2 sodium-ion battery cathode via simultaneous Al doping and Cr2O3 coating. ACS Appl. Mater. Interfaces 2023, 15, 14958–14969. [Google Scholar] [CrossRef]
- Lee, I.; Oh, G.; Lee, S.; Yu, T.-Y.; Alfaruqi, M.H.; Mathew, V.; Sambandam, B.; Sun, Y.-K.; Hwang, J.-Y.; Kim, J. Cationic and transition metal co-substitution strategy of O3-type NaCrO2 cathode for high-energy sodium-ion batteries. Energy Storage Mater. 2021, 41, 183–195. [Google Scholar] [CrossRef]
- Ma, C.; Li, X.-L.; Yue, X.-Y.; Bao, J.; Luo, R.-J.; Zhou, Y.-N. Suppressing O3- O’3 phase transition in NaCrO2 cathode enabling high rate capability for sodium-ion batteries by Sb substitution. Chem. Eng. J. 2022, 432, 134305. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, R.; Hu, Y.-S.; Avdeev, M.; Chen, L. P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries. Nat. Commun. 2015, 6, 6954. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Hu, G.; Peng, Z.; Cao, Y.; Zeng, Y.; Du, K. Ti-doped NaCrO2 as cathode materials for sodium-ion batteries with excellent long cycle life. J. Alloys Compd. 2019, 779, 147–155. [Google Scholar] [CrossRef]
- Wang, S.; Chen, F.; Zhu, T.-Y.; He, X.-D.; Liao, J.-Y.; Zhang, L.-M.; Ding, X.; Hu, Q.; Chen, C.-H. In situ-formed Cr2O3 coating on NaCrO2 with improved sodium storage performance. ACS Appl. Mater. Interfaces. 2020, 12, 44671–44678. [Google Scholar] [CrossRef]
- Cai, J.; Wei, Y.; Zhu, Y.; Tian, L.; Zhang, J.; Shen, Y.; Wang, M. Nitrogen-doped carbon-coating enables high-rate capability and long-cycle stability of NaCrO2 cathode for sodium-ion battery. Appl. Surf. Sci. 2025, 683, 161804. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Panwar, A.K. Effect of carbon shell over NaCrO2 core by C2H2 decomposition to enhance electrochemical properties for rechargeable Sodium-ion batteries. Appl. Surf. Sci. 2022, 573, 151449. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Z.; Shaw, L.L.; Ashuri, M. On the Electrochemical Properties of Carbon-Coated NaCrO2 for Na-Ion Batteries. Batteries 2023, 9, 433. [Google Scholar] [CrossRef]
- Ding, J.-J.; Zhou, Y.-N.; Sun, Q.; Fu, Z.-W. Cycle performance improvement of NaCrO2 cathode by carbon coating for sodium ion batteries. Electrochem. Commun. 2012, 22, 85–88. [Google Scholar] [CrossRef]
- Wu, J.; Hu, G.; Du, K.; Peng, Z.; Huang, M.; Fan, J.; Gong, Y.; Guan, D.; Shi, Y.; Liu, R.; et al. Inhibiting electrochemical phase transition of NaCrO2 with long-cycle stability by surface fluorination treatment. Electrochim. Acta 2022, 403, 139641. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Yano, M.; Yoshida, H.; Kuze, S.; Komaba, S. Synthesis and electrode performance of O3-type NaFeO2-NaNi1/2Mn1/2O2 solid solution for rechargeable sodium batteries. J. Electrochem. Soc. 2013, 160, A3131. [Google Scholar] [CrossRef]
- Okada, S.; Yamaki, J. Iron-Based Rare-Metal-Free Cathodes. In Lithium Ion Rechargeable Batteries; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Zhao, J.; Zhao, L.; Dimov, N.; Okada, S.; Nishida, T. Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries. J. Electrochem. Soc. 2013, 160, A3077. [Google Scholar] [CrossRef]
- Watanabe, H.; Usui, H.; Domi, Y.; Nishida, T.; Uetake, K.; Tanaka, T.; Kurokawa, H.; Sakaguchi, H. NaFeO2: Possible Materials for Anode and Cathode of Na-Ion Batteries. ACS Electrochem. 2025, 1, 73–81. [Google Scholar] [CrossRef]
- McAuliffe, R.D.; Kamm, G.E.; McDermott, M.J.; Hermann, R.P.; Vasquez-Garcia, N.; Sacci, R.L.; Persson, K.A.; Chapman, K.W.; Veith, G.M. Direct Mechanochemical Synthesis, Phase Stability, and Electrochemical Performance of α-NaFeO2. Inorg. Chem. 2023, 62, 3358–3367. [Google Scholar] [CrossRef]
- Blesa, M.C.; Moran, E.; León, C.; Santamaria, J.; Tornero, J.D.; Menéndez, N. α-NaFeO2: Ionic conductivity and sodium extraction. Solid State Ion. 1999, 126, 81–87. [Google Scholar] [CrossRef]
- Okada, S.; Takahashi, Y.; Kiyabu, T.; Doi, T.; Yamaki, J.-I.; Nishida, T. Layered transition metal oxides as cathodes for sodium secondary battery. ECS Meet. Abstr. 2006, MA2006-02, 201. [Google Scholar] [CrossRef]
- Tabuchi, M.; Kataoka, R. Structure and electrochemical properties of α-NaFeO2 obtained under various hydrothermal conditions. J. Electrochem. Soc. 2019, 166, A2209. [Google Scholar] [CrossRef]
- Kuganathan, N.; Kelaidis, N.; Chroneos, A. Defect chemistry, sodium diffusion and doping behavior in NaFeO2 polymorphs as cathode materials for Na-ion batteries: A computational study. Materials 2019, 12, 3243. [Google Scholar] [CrossRef]
- Kikkawa, S.; Miyazaki, S.; Koizumi, M. Sodium deintercalation from α-NaFeO2. Mater. Res. Bull. 1985, 20, 373–377. [Google Scholar] [CrossRef]
- Takeda, Y.; Nakahara, K.; Nishijima, M.; Imanishi, N.; Yamamoto, O.; Takano, M.; Kanno, R. Sodium deintercalation from sodium iron oxide. Mater. Res. Bull. 1994, 29, 659–666. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Yoshida, H.; Komaba, S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries. Electrochem 2012, 80, 716–719. [Google Scholar] [CrossRef]
- Lee, E.; Brown, D.E.; Alp, E.E.; Ren, Y.; Lu, J.; Woo, J.-J.; Johnson, C.S. New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2. Chem. Mater. 2015, 27, 6755–6764. [Google Scholar] [CrossRef]
- Thorne, J.S.; Chowdhury, S.; Dunlap, R.A.; Obrovac, M.N. Structure and electrochemistry of NaxFexTi1-xO2 (1.0 ≥ x ≥ 0.75) for Na-Ion battery positive electrodes. J. Electrochem. Soc. 2014, 161, A1801. [Google Scholar] [CrossRef]
- Xu, J.; Han, Z.; Jiang, K.; Bai, P.; Liang, Y.; Zhang, X.; Wang, P.; Guo, S.; Zhou, H. suppressing cation migration and reducing particle cracks in a layered Fe-based cathode for advanced sodium-ion batteries. Small 2020, 16, 1904388. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Yabuuchi, N.; Komaba, S. NaFe0.5Co0.5O2 as high energy and power positive electrode for Na-ion batteries. Electrochem. Commun. 2013, 34, 60–63. [Google Scholar] [CrossRef]
- Shevchenko, V.A.; Glazkova, I.S.; Novichkov, D.A.; Skvortsova, I.; Sobolev, A.V.; Abakumov, A.M.; Presniakov, I.A.; Drozhzhin, O.A.; Antipov, E.V. Competition between the Ni and Fe redox in the O3-NaNi1/3Fe1/3Mn1/3O2 cathode material for na-ion batteries. Chem. Mater. 2023, 35, 4015–4025. [Google Scholar] [CrossRef]
- Ono, Y.; Yui, Y.; Hayashi, M.; Asakura, K.; Kitabayashi, H.; Takahashi, K.I. Electrochemical properties of NaCuO2 for sodium-ion secondary batteries. ECS Trans. 2014, 58, 33. [Google Scholar] [CrossRef]
- Ono, Y.; Yui, Y.; Asakura, K.; Nakamura, J.; Hayashi, M.; Takahashi, K.I. Characterization of electrochemical cycling-induced new products of NaCuO2 cathode material for sodium secondary batteries. Am. J. Phys. Chem. 2014, 3, 61–66. [Google Scholar] [CrossRef]
- Dyer, L.D.; Borie, B.S., Jr.; Smith, G.P. Alkali metal-nickel oxides of the type MNiO2. J. Am. Chem. Soc. 1954, 76, 1499–1503. [Google Scholar] [CrossRef]
- Dick, S.; Müller, M.; Preissinger, F.; Zeiske, T. The structure of monoclinic NaNiO2 as determined by powder X-ray and neutron scattering. Powder Diffr. 1997, 12, 239–241. [Google Scholar] [CrossRef]
- Chappel, E.; Núñez-Regueiro, M.D.; Chouteau, G.; Isnard, O.; Darie, C. Study of the ferrodistorsive orbital ordering in NaNiO2 by neutron diffraction and submillimeter wave ESR. Eur. Phys. J. B 2000, 17, 615–622. [Google Scholar] [CrossRef]
- Sofin, M.; Jansen, M. New route of preparation and properties of NaNiO2. Z. Naturforsch. B 2005, 60, 701–704. [Google Scholar] [CrossRef]
- Vassilaras, P.; Ma, X.; Li, X.; Ceder, G. Electrochemical properties of monoclinic NaNiO2. J. Electrochem. Soc. 2012, 160, A207. [Google Scholar] [CrossRef]
- Miyazaki, S.; Kikkawa, S.; Koizumi, M. Chemical and electrochemical deintercalations of the layered compounds LiMO2 (M = Cr, Co) and NaM’O2 (M’ = Cr, Fe, Co, Ni). Synth. Met. 1983, 6, 211–217. [Google Scholar] [CrossRef]
- Han, M.H.; Gonzalo, E.; Casas-Cabanas, M.; Rojo, T. Structural evolution and electrochemistry of monoclinic NaNiO2 upon the first cycling process. J. Power Sources 2014, 258, 266–271. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.; Zhang, X.; Ren, Y.; Zuo, P.; Yin, G.; Wang, J. Unravelling the origin of irreversible capacity loss in NaNiO2 for high voltage sodium ion batteries. Nano Energy 2017, 34, 215–223. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, J.-Y.; Park, J.-H.; Kim, S.-O.; Kim, H.-S.; Kim, K.-B.; Chung, K.Y. RT-XAMF and TR-XRD studies of solid-state synthesis and thermal stability of NaNiO2 as cathode material for sodium-ion batteries. Ceram. Int. 2022, 48, 19675–19680. [Google Scholar] [CrossRef]
- Singh, G.; Aguesse, F.; Otaegui, L.; Goikolea, E.; Gonzalo, E.; Segalini, J.; Rojo, T. Electrochemical performance of NaFex (Ni0.5Ti0.5)1-xO2 (x = 0.2 and x = 0.4) cathode for sodium-ion battery. J. Power Sources 2015, 273, 333–339. [Google Scholar] [CrossRef]
- Chang, Y.; Zhou, Y.; Wang, Z.; Li, X.; Wang, D.; Duan, J.; Wang, J.; Yan, G. Synthesis of NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries via spray pyrolysis method. J. Alloys Compd. 2022, 922, 166283. [Google Scholar] [CrossRef]
- Wang, H.; Gu, M.; Jiang, J.; Lai, C.; Ai, X. An O3-type NaNi0.5Mn0.3Ti0.2O2 compound as new cathode material for room-temperature sodium-ion batteries. J. Power Sources 2016, 327, 653–657. [Google Scholar] [CrossRef]
- Zheng, L.; Fielden, R.; Bennett, J.C.; Obrovac, M.N. Hexagonal and monoclinic NaNi0.8Co0.15Al0.05O2 (Na-NCA) for sodium ion batteries. J. Power Sources 2019, 433, 226698. [Google Scholar] [CrossRef]
- Meghnani, D.; Singh, R.K. Influence of synthesis route on the structure and electrochemical performance of biphasic (O’3/O3) NaNi0.815Co0.15Al0.035O2 cathode for sodium-ion batteries. Electrochim. Acta 2022, 419, 140403. [Google Scholar] [CrossRef]
- Deng, C.; Gabriel, E.; Skinner, P.; Lee, S.; Barnes, P.; Ma, C.; Gim, J.; Lau, M.L.; Lee, E.; Xiong, H. Origins of Irreversibility in Layered NaNixFeyMnzO2 Cathode Materials for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 51397–51408. [Google Scholar] [CrossRef]
- Fielden, R.; Obrovac, M.N. Investigation of the NaNixMn1-xO2 (0≤ x≤ 1) System for Na-ion Battery Cathode Materials (Preprint). J. Electrochem. Soc. 2015, 162, A453. [Google Scholar] [CrossRef]
- Moeez, I.; Susanto, D.; Ali, G.; Jung, H.-G.; Lim, H.-D.; Chung, K.Y. Effect of the interfacial protective layer on the NaFe0.5Ni0.5O2 cathode for rechargeable sodium-ion batteries. J. Mater. Chem. A 2020, 8, 13964–13970. [Google Scholar] [CrossRef]
- Nanba, Y.; Iwao, T.; Mortemard de Boisse, B.; Zhao, W.; Hosono, E.; Asakura, D.; Niwa, H.; Kiuchi, H.; Miyawaki, J.; Harada, Y.; et al. Redox potential paradox in NaxMO2 for sodium-ion battery cathodes. Chem. Mater. 2016, 28, 1058–1065. [Google Scholar] [CrossRef]
- Guo, H.; Wang, Y.; Han, W.; Yu, Z.; Qi, X.; Sun, K.; Hu, Y.-S.; Liu, Y.; Chen, D.; Chen, L. Na-deficient O3-type cathode material Na0.8[Ni0.3Co0.2Ti0.5]O2 for room-temperature sodium-ion batteries. Electrochim. Acta 2015, 158, 258–263. [Google Scholar] [CrossRef]
- Maletti, S.; Sarapulova, A.; Schökel, A.; Mikhailova, D. Operando studies on the NaNi0.5Ti0.5O2 cathode for Na-ion batteries: Elucidating titanium as a structure stabilizer. ACS Appl. Mater. Interfaces 2019, 11, 33923–33930. [Google Scholar] [CrossRef]
- Ma, J.; Bo, S.-H.; Wu, L.; Zhu, Y.; Grey, C.P.; Khalifah, P.G. Ordered and disordered polymorphs of Na(Ni2/3Sb1/3)O2: Honeycomb-ordered cathodes for Na-ion batteries. Chem. Mater. 2015, 27, 2387–2399. [Google Scholar] [CrossRef]
- An, S.; Karger, L.; Dreyer, S.L.; Hu, Y.; Barbosa, E.; Zhang, R.; Lin, J.; Fichtner, M.; Kondrakov, A.; Janek, J. Improving cycling performance of the NaNiO2 cathode in sodium-ion batteries by titanium substitution. Mater. Futures 2024, 3, 035103. [Google Scholar] [CrossRef]
- Saadoune, I.; Maazaz, A.; Ménétrier, M.; Delmas, C. On the NaxNi0.6Co0.4O2 system: Physical and electrochemical studies. J. Solid State Chem. 1996, 122, 111–117. [Google Scholar] [CrossRef]
- Darga, J.; Manthiram, A. Facile synthesis of O3-type NaNi0.5Mn0.5O2 single crystals with improved performance in sodium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 52729–52737. [Google Scholar] [CrossRef]
- Liang, X.; Yu, T.-Y.; Ryu, H.-H.; Sun, Y.-K. Hierarchical O3/P2 heterostructured cathode materials for advanced sodium-ion batteries. Energy Storage Mater. 2022, 47, 515–525. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Su, Y.; Yang, Y.; Yu, H.; Wang, H.; Zhang, Q.; Lu, Y.; Song, D.; Wang, S.; et al. Four-in-one strategy to boost the performance of Nax[Ni, Mn]O2. Adv. Funct. Mater. 2023, 33, 2301568. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, G.; Luo, B.; Ji, W.; Liu, Z.; Li, M.; Nong, Y.; Tian, Y.; Wang, X.; Zhang, J.; et al. Suppression of Adverse Phase Transition of Layered Oxide Cathode via Local Electronic Structure Regulation for High-Capacity Sodium-Ion Batteries. ACS Nano 2024, 18, 18622–18634. [Google Scholar] [CrossRef]
- Yuan, T.; Li, P.; Sun, Y.; Che, H.; Zheng, Q.; Zhang, Y.; Huang, S.; Qiu, J.; Pang, Y.; Yang, J.; et al. Refining O3-Type Ni/Mn-Based Sodium-Ion Battery Cathodes via “Atomic Knife” Achieving High Capacity and Stability. Adv. Funct. Mater. 2024, 34, 2414627. [Google Scholar] [CrossRef]
- Wang, P.F.; Yao, H.R.; Liu, X.Y.; Zhang, J.N.; Gu, L.; Yu, X.Q.; Yin, Y.X.; Guo, Y.G. Ti-substituted NaNi0.5Mn0.5-xTixO2 cathodes with reversible O3−P3 phase transition for high-performance sodium-ion batteries. Adv. Mater. 2017, 29, 1700210. [Google Scholar] [CrossRef] [PubMed]
- Meghnani, D.; Srivastava, N.; Tiwari, R.K.; Mishra, R.; Patel, A.; Tiwari, A.; Samriddhi; Singh, S.P.; Yadav, V.; Singh, R.K. Surface-Coated NaNi0.815Co0.15Al0.035O2 Cathode-Based Sodium-Ion Batteries with Enhanced Performance. Energy Fuels 2023, 38, 694–706. [Google Scholar] [CrossRef]
- Li, M.; Qiu, X.; Yin, Y.; Wei, T.; Dai, Z. O3-Type Ni-Rich NaNi2/3Mn1/6Fe1/6O2: A high-performance cathode material for sodium-ion batteries. J. Alloys Compd. 2023, 969, 172406. [Google Scholar] [CrossRef]
- Bhide, A.; Hariharan, K. Physicochemical properties of NaxCoO2 as a cathode for solid state sodium battery. Solid State Ion. 2011, 192, 360–363. [Google Scholar] [CrossRef]
- Shibata, A.; Kobayashi, W.; Moritomo, Y. Sodium ion diffusion in layered NaxMnO2 (0.49 ≤ x≤ 0.75): Comparison with NaxCoO2. Appl. Phys. Express 2014, 7, 067101. [Google Scholar] [CrossRef]
- Zandbergen, H.W.; Foo, M.; Xu, Q.; Kumar, V.; Cava, R.J. Sodium ion ordering in NaxCoO2: Electron diffraction study. Phys. Rev. B 2004, 70, 024101. [Google Scholar] [CrossRef]
- Nwanya, A.C.; Ndipingwi, M.M.; Ezema, F.I.; Iwuoha, E.I.; Maaza, M. Bio-synthesized P2-Na0.57CoO2 nanoparticles as cathode for aqueous sodium ion battery. J. Electroanal. Chem. 2020, 878, 114600. [Google Scholar] [CrossRef]
- Su, J.-C.; Zhou, G.; Pei, Y.; Yang, Z.-H.; Wang, X.-Y. First-principles investigation on structural and electrochemical properties of NaCoO2 for rechargeable Na-ion batteries. J. Cent. South Univ. 2015, 22, 2036–2042. [Google Scholar] [CrossRef]
- Takahashi, Y.; Gotoh, Y.; Akimoto, J. Single-crystal growth, crystal and electronic structure of NaCoO2. J. Solid State Chem. 2003, 172, 22–26. [Google Scholar] [CrossRef]
- Berthelot, R.; Carlier, D.; Delmas, C. Electrochemical investigation of the P2-NaxCoO2 phase diagram. Nat. Mater. 2011, 10, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Chen, S.; Zhang, L.; Yang, X. High Areal Capacity Na0.67CoO2 Bundle Array Cathode Tailored for High-Performance Sodium-Ion Batteries. ChemElectroChem 2019, 6, 947–952. [Google Scholar] [CrossRef]
- Shiprath, K.; Manjunatha, H.; Nadh, R.V.; Babu, T.A.; Ramesh, S.; Naidu, K.C.B.; Ramesha, M. Synthesis and Electrochemical Characterization of NaCoO2 as Cathode Material in 2 M NaOH Aqueous Electrolyte. ChemistrySelect 2021, 6, 1874–1881. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research development on sodium-ion batteries. Chem. Rev. 2014, 114, 11636–11682. [Google Scholar] [CrossRef] [PubMed]
- Clément, R.J.; Bruce, P.G.; Grey, C.P. manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials. J. Electrochem. Soc. 2015, 162, A2589. [Google Scholar] [CrossRef]
- Carlier, D.; Cheng, J.H.; Berthelot, R.; Guignard, M.; Yoncheva, M.; Stoyanova, R.; Hwang, B.J.; Delmas, C. The P2-Na2/3Co2/3Mn1/3O2 phase: Structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans. 2011, 40, 9306–9312. [Google Scholar] [CrossRef]
- Beck, F.R.; Cheng, Y.Q.; Bi, Z.; Feygenson, M.; Bridges, C.A.; Moorhead-Rosenberg, Z.; Manthiram, A.; Goodenough, J.B.; Paranthaman, M.P.; Manivannan, A. Neutron diffraction and electrochemical studies of Na0.79CoO2 and Na0.79Co0.7Mn0.3O2 cathodes for sodium-ion batteries. J. Electrochem. Soc. 2014, 161, A961. [Google Scholar] [CrossRef]
- Kang, S.M.; Park, J.-H.; Jin, A.; Jung, Y.H.; Mun, J.; Sung, Y.-E. Na+/Vacancy Disordered P2-Na0.67Co1-xTixO2: High-Energy and High-Power Cathode Materials for Sodium Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 3562–3570. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Mizukoshi, F.; Imanishi, N. Improved cycling performance of P2-type layered sodium cobalt oxide by calcium substitution. J. Power Sources 2015, 280, 205–209. [Google Scholar] [CrossRef]
- Han, S.C.; Lim, H.; Jeong, J.; Ahn, D.; Park, W.B.; Sohn, K.-S.; Pyo, M. Ca-doped NaxCoO2 for improved cyclability in sodium ion batteries. J. Power Sources 2015, 277, 9–16. [Google Scholar] [CrossRef]
- Ding, J.J.; Zhou, Y.N.; Sun, Q.; Yu, X.Q.; Yang, X.Q.; Fu, Z.W. Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries. Electrochim. Acta 2013, 87, 388–393. [Google Scholar] [CrossRef]
- Rai, A.K.; Anh, L.T.; Gim, J.; Mathew, V.; Kim, J. Electrochemical properties of NaxCoO2 (x~ 0.71) cathode for rechargeable sodium-ion batteries. Ceram. Int. 2014, 40, 2411–2417. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, Y.; Jo, E.; Chung, K.Y.; Choi, W.; Kim, S.M.; Chang, W. Investigation of Thermal Stability of P2-NaxCoO2 Cathode Materials for Sodium Ion Batteries Using Real-Time Electron Microscopy. ACS Appl. Mater. Interfaces 2017, 9, 18883–18888. [Google Scholar] [CrossRef]
- Fang, Y.; Yu, X.-Y.; Lou, X.W. (David). A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7CoO2 microspheres. Angew. Chem. Int. Ed. 2017, 56, 5801–5805. [Google Scholar] [CrossRef]
- Onoda, M. Geometrically frustrated triangular lattice system NaxVO2: Super paramagnetism in x = 1 and trimerization in x ≈ 0.7. J. Phys. Condens. Matter. 2008, 20, 145205. [Google Scholar] [CrossRef]
- Fielden, R.; Cole, L.; Obrovac, M.N. Successive orbital ordering transitions in NaVO2. Phys. Rev. Lett. 2008, 101, 166402. [Google Scholar] [CrossRef]
- Fielden, R.; Cole, L.; Obrovac, M.N. Low voltage sodium intercalation in NaxVxTi1-xO2 (2/3 ≤ x ≤ 1). J. Electrochem. Soc. 2017, 164, A490. [Google Scholar] [CrossRef]
- Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74–80. [Google Scholar] [CrossRef]
- Hamani, D.; Ati, M.; Tarascon, J.-M.; Rozier, P. NaxVO2 as possible electrode for Na-ion batteries. Electrochem. Commun. 2011, 13, 938–941. [Google Scholar] [CrossRef]
- Didier, C.; Guignard, M.; Denage, C.; Szajwaj, O.; Ito, S.; Saadoune, I.; Darriet, J.; Delmas, C. Electrochemical Na-Deintercalation from NaVO2. Electrochem. Solid-State Lett. 2011, 14, A75. [Google Scholar] [CrossRef]
- Didier, C.; Guignard, M.; Darriet, J.; Delmas, C. O’3-NaxVO2 System: A Superstructure for Na1/2VO2. Inorg. Chem. 2012, 51, 11007–11016. [Google Scholar] [CrossRef] [PubMed]
- Shishkin, M.; Kumakura, S.; Sato, S.; Kubota, K.; Komaba, S.; Sato, H. Unraveling the role of doping in selective stabilization of NaMnO2 polymorphs: Combined theoretical and experimental study. Chem. Mater. 2018, 30, 1257–1264. [Google Scholar] [CrossRef]
- Ma, X.; Chen, H.; Ceder, G. Electrochemical properties of monoclinic NaMnO2. J. Electrochem. Soc. 2011, 158, A1307. [Google Scholar] [CrossRef]
- Kubota, K.; Miyazaki, M.; Kim, E.J.; Yoshida, H.; Barpanda, P.; Komaba, S. Structural change induced by electrochemical sodium extraction from layered O’3-NaMnO2. J. Mater. Chem. A 2021, 9, 26810–26819. [Google Scholar] [CrossRef]
- Billaud, J.; Clément, R.J.; Armstrong, A.R.; Canales-Vázquez, J.; Rozier, P.; Grey, C.P.; Bruce, P.G. β-NaMnO2: A high-performance cathode for sodium-ion batteries. J. Am. Chem. Soc. 2014, 136, 17243–17248. [Google Scholar] [CrossRef] [PubMed]
- Abakumov, A.M.; Tsirlin, A.A.; Bakaimi, I.; Van Tendeloo, G.; Lappas, A. Multiple twinning as a structure directing mechanism in layered rock-salt-type oxides: NaMnO2 polymorphism, redox potentials, and magnetism. Chem. Mater. 2014, 26, 3306–3315. [Google Scholar] [CrossRef]
- Yu, H.; Walsh, M.; Liang, X. Improving the comprehensive performance of Na0.7MnO2 for sodium ion batteries by ZrO2 atomic layer deposition. ACS Appl. Mater. Interfaces 2021, 13, 54884–54893. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.; Wang, B.; Zeng, G.; Nogita, K.; Ye, D.; Wang, L. Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem. Asian J. 2015, 10, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Thorne, J.S.; Dunlap, R.A.; Obrovac, M.N. Structure and electrochemistry of NaxFexMn1-xO2 (1.0 ≤ x ≤ 0.5) for Na-ion battery positive electrodes. J. Electrochem. Soc. 2012, 160, A361. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Zhang, J.; Gao, R.; Zhang, H.; Hu, Z.; Liu, X. Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0.7Mn0.7Ni0.3-xCoxO2 Cathode Materials for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 15439–15448. [Google Scholar] [CrossRef] [PubMed]
- Han, M.H.; Gonzalo, E.; Sharma, N.; López del Amo, J.M.; Armand, M.; Avdeev, M.; Saiz Garitaonandia, J.J.; Rojo, T. High-performance P2-phase Na2/3Mn0.8Fe0.1Ti0.1O2 cathode material for ambient-temperature sodium-ion batteries. Chem. Mater. 2016, 28, 106–116. [Google Scholar] [CrossRef]
- Gao, X.; Chen, J.; Liu, H.; Yin, S.; Tian, Y.; Cao, X.; Zou, G.; Hou, H.; Wei, W.; Chen, L.; et al. Copper-substituted NaxMO2 (M= Fe, Mn) cathodes for sodium ion batteries: Enhanced cycling stability through suppression of Mn (III) formation. Chem. Eng. J. 2021, 406, 126830. [Google Scholar] [CrossRef]
- Bucher, N.; Hartung, S.; Franklin, J.B.; Wise, A.M.; Lim, L.Y.; Chen, H.-Y.; Nelson Weker, J.; Toney, M.F.; Srinivasan, M. P2-NaxCoyMn1-yO2 (y = 0, 0.1) as Cathode Materials in Sodium-Ion Batteries-Effects of Doping and Morphology To Enhance Cycling Stability. Chem. Mater. 2016, 28, 2041–2051. [Google Scholar] [CrossRef]
- Xu, S.; Chen, H.; Li, C.; Nie, R.; Yang, Y.; Zhou, M.; Zhang, X.; Zhou, H. Effect of Ti doping on the structural and electrochemical performance of O3-type Na (Ni0.3Fe0.2Mn0.5)1-xTixO2 cathode materials for sodium-ion batteries. J. Alloys Compd. 2023, 962, 171199. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Zhou, Y.-N.; Liu, L.; Yang, X.-Q.; Ceder, G. O3-type Na (Mn0.25Fe0.25Co0.25Ni0.25)O2: A quaternary layered cathode compound for rechargeable Na ion batteries. Electrochem. Commun. 2014, 49, 51–54. [Google Scholar] [CrossRef]
- Yuan, D.D.; Wang, Y.X.; Cao, Y.L.; Ai, X.P.; Yang, H.X. Improved electrochemical performance of Fe-substituted NaNi0.5Mn0.5O2 cathode materials for sodium-ion batteries. ACS Appl. Mater. Interfaces 2015, 7, 8585–8591. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ge, M.; Zhang, M.; Tang, X.; Liu, X.; Cui, Y.; Zhang, H.; Yang, Y.; Yin, Y.; Yang, S.-T. Prilling and Coating Strategy to Synthesize High-Performance Spherical NaNi0.4Fe0.2Mn0.4O2 Cathode Materials for Sodium Ion Batteries. Langmuir 2024, 40, 18610–18618. [Google Scholar] [CrossRef]
- Jiang, L.-W.; Lu, Y.-X.; Wang, Y.-S.; Liu, L.-L.; Qi, X.-G.; Zhao, C.-L.; Chen, L.-Q.; Hu, Y.-S. A high-temperature β-phase NaMnO2 stabilized by Cu doping and its Na storage properties. Chin. Phys. Lett. 2018, 35, 048801. [Google Scholar] [CrossRef]
- Wang, X.-Z.; Zuo, Y.; Qin, Y.; Zhu, X.; Xu, S.-W.; Guo, Y.-J.; Yan, T.; Zhang, L.; Gao, Z.; Yu, L.; et al. Fast Na+ Kinetics and Suppressed Voltage Hysteresis Enabled by a High-Entropy Strategy for Sodium Oxide Cathodes. Adv. Mater. 2024, 36, 2312300. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Zhao, C.; Xiao, D.; Rong, X.; Wang, H.; Li, Y.; Yang, Y.; Lu, Y.-X.; Hu, Y.-S. Using high-entropy configuration strategy to design Na-ion layered oxide cathodes with superior electrochemical performance and thermal stability. J. Am. Chem. Soc. 2022, 18, 8286–8295. [Google Scholar] [CrossRef]
- Lamb, J.; Jarvis, K.; Manthiram, A. Molten-salt synthesis of O3-type layered oxide single crystal cathodes with controlled morphology towards long-life sodium-ion batteries. Small 2022, 43, 2106927. [Google Scholar] [CrossRef]
- Zhang, L.; Huang, J.; Song, M.; Lu, C.; Wu, W.; Wu, X. Single-crystal growth of P2-type layered oxides with increased exposure of {010} planes for high-performance sodium-ion batteries. ACS Appl. Mater. Interfaces 2023, 40, 47037–47048. [Google Scholar] [CrossRef]
- Yang, D.; Long, Y.; Gao, X.-W.; Zhao, Z.; Chen, H.; Lai, Q.; Li, C.; Niu, R.; Liu, Z.; Gu, Q.; et al. Single Crystal Sodium Layered Oxide Achieves Superior Cyclability at High Voltage. Adv. Energy Mater. 2024, 14, 2404999. [Google Scholar] [CrossRef]
- Xu, L.; Song, M.; Xie, J.; Chen, M.; Wu, W.; Tan, Z.; Qiu, S.; Wu, X. Suppressing the P2-OP4 phase transition of single-crystal P2-type Ni/Zn/Mn-based layered oxide for advanced sodium-ion batteries. Powder Technol. 2024, 448, 120314. [Google Scholar] [CrossRef]
- Zhang, F.; Lu, Y.; Guo, Y.; Li, C.; Liu, Y.; Yang, M.; Zhao, B.; Wu, W.; Wu, X. Highly stabilized single-crystal P2-type layered oxides obtained via rational crystal orientation modulation for sodium-ion batteries. Chem. Eng. J. 2023, 458, 141515. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.-R.; Hu, H.-Y.; Zhu, Y.-F.; Li, S.; Li, J.-Y.; Wu, X.-W.; Chou, S.-L. Formulating high-rate and long-cycle heterostructured layered oxide cathodes by local chemistry and orbital hybridization modulation for sodium-ion batteries. Adv. Mater. 2022, 33, 2202695. [Google Scholar] [CrossRef]
- Yang, L.; López del Amo, J.M.; Shadike, Z.; Bak, S.-M.; Bonilla, F.; Galceran, M.; Nayak, P.K.; Buchheim, J.R.; Yang, X.-Q.; Rojo, T.; et al. A Co- and Ni-free P2/O3 biphasic lithium stabilized layered oxide for sodium-ion batteries and its cycling behavior. Adv. Funct. Mater. 2020, 42, 2003364. [Google Scholar] [CrossRef]
- Zhou, Y.-N.; Wang, P.-F.; Niu, Y.-B.; Li, Q.; Yu, X.; Yin, Y.-X.; Xu, S.; Guo, Y.-G. A P2/P3 composite layered cathode for high-performance Na-ion full batteries. Nano Energy 2019, 55, 143–150. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, W.; Lv, X.; Zhao, F. A novel P2/O3 biphase Na0.67Fe0.425Mn0.425Mg0.15O2 as cathode for high-performance sodium-ion batteries. J. Power Sources 2019, 421, 147–155. [Google Scholar] [CrossRef]
- Liang, X.; Sun, Y.-K. A novel pentanary metal oxide cathode with P2/O3 biphasic structure for high-performance sodium-ion batteries. Adv. Funct. Mater. 2022, 44, 2206154. [Google Scholar] [CrossRef]
- Liu, R.; Huang, W.; Liu, J.; Li, Y.; Wang, J.; Liu, Q.; Ma, L.; Kwon, G.; Ehrlich, S.N.; Wu, Y.; et al. Revealing the Nature of Binary-Phase on Structural Stability of Sodium Layered Oxide Cathodes. Adv. Mater. 2024, 36, 2401048. [Google Scholar] [CrossRef]
- Zhou, P.; Che, Z.; Liu, J.; Zhou, J.; Wu, X.; Weng, J.; Zhao, J.; Cao, H.; Zhou, J.; Cheng, F. High-entropy P2/O3 biphasic cathode materials for wide-temperature rechargeable sodium-ion batteries. Energy Storage Mater. 2023, 57, 618–627. [Google Scholar] [CrossRef]
Characteristic | Sodium Batteries | Lithium Batteries |
---|---|---|
Energy density | 150–200 Wh kg−1 | 200–300 Wh kg−1 |
Nominal voltage | 3.2–3.3 V | 3.6–3.7 V |
Environmentally friendly | Can be transported at zero volt | Should be always stored with a minimum charge |
Availability | Mostly worldwide available at about 500 times higher the lithium | Availability is limited to some countries and not abundant |
Raw material price | ~330 U.S. dollar per metric ton for Na2CO3 | ~68,000 U.S. dollar per metric ton for Li2CO3 |
Lifespan | 5–10 years | 5–15 years |
Researchers | Pristine Material | Modified Material | Testing Condition | Pristine Material [mAh g−1] | Modified Material [mAh g−1] |
---|---|---|---|---|---|
Ikhe et al. [60] | NaCrO2 | NaCr0.98Al0.02O2@Cr2O3 | 2.0–3.6 V, RT * 600 mAh g−1 | 108.5 (initial) 56 (500 cycles) | 106.6 (initial) 107 (1000 cycles) |
Li et al. [64] | NaCrO2 | Na0.95Cr0.95Ti0.05O2 | 2.3–3.6 V, RT 120 mAh g−1 | 104 (initial) 52 (800 cycles) | 98 (initial) 78 (800 cycles) |
Ma et al. [62] | NaCrO2 | Na0.9Cr0.95Sn0.05O2 | 2.5–3.5 V, RT 600 mAh g−1 | 107 (initial) 50 (1000 cycles) | 114 (initial) 81 (1000 cycles) |
Zheng et al. [46] | NaCrO2 | Na0.9Ca0.05CrO2 | 2–3.6 V, RT 120 mAh g−1 | 110 (initial) 52 (500 cycles) | 118 (initial) 90 (500 cycles) |
Cai et al. [66] | NaCrO2 | NaCrO2@nitrogen doped carbon | 2.0–3.6 V, RT 1200 mAh g−1 | 90 (initial) 47.5 (1000 cycles) | 110 (initial) 100.2 (1000 cycles) |
Lee et al. [61] | NaCrO2 | Na0.9Ca0.035Cr0.97Ti0.03O2 | 1.5–3.8 V, RT 2400 mAh g−1 | 34 (initial) 22.1 (500 cycles) | 76 (initial) 61.7 (500 cycles) |
Wu et al. [70] | NaCrO2 | NaCrO2@PVDF-La2(CO3)3·8H2O | 2.3–3.5 V, RT 240 mAh g−1 | 119.6 (initial) 56.5 (400 cycles) | 111.8 (initial) 103.5 (900 cycles) |
Compound | Phase Type | Discharge Specific Capacity (mAh g−1) | Cycling Rate |
---|---|---|---|
Na0.67CoO2 [20] | P2 | 105.0 | 2 μA cm−2 |
Na0.74CoO2 [137] | P2 | 107.0 | 0.1 C |
Na0.71CoO2 [138] | P2 | 69.7 | 0.08 C |
Na0.74CoO2 [135] | P2 | 134.0 | 11.1 mA g−1 |
Na0.67CoO2 [139] | P2 | 146.8 | 10 mAg−1 |
Na0.67CoO2 [134] | P2 | 146.0 | 100 mA g−1 |
Na0.7CoO2 [140] | P2 | 125.0 | 5 mA g−1 |
Na0.99CoO2 [20] | O3 | 118.0 | 4.3 μA cm−2 |
NaCoO2 [86] | O3 | 140.0 | 12 mA g−1 |
Na0.57CoO2 [124] | P2 | 68.0 | 0.7 C (0.1 A g−1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahangari, M.; Zhou, M.; Luo, H. Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries. Micromachines 2025, 16, 137. https://doi.org/10.3390/mi16020137
Ahangari M, Zhou M, Luo H. Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries. Micromachines. 2025; 16(2):137. https://doi.org/10.3390/mi16020137
Chicago/Turabian StyleAhangari, Mehdi, Meng Zhou, and Hongmei Luo. 2025. "Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries" Micromachines 16, no. 2: 137. https://doi.org/10.3390/mi16020137
APA StyleAhangari, M., Zhou, M., & Luo, H. (2025). Review of Layered Transition Metal Oxide Materials for Cathodes in Sodium-Ion Batteries. Micromachines, 16(2), 137. https://doi.org/10.3390/mi16020137