Editorial for the Special Issue on State-of-the-Art CMOS and MEMS Devices
1. Introduction
2. Overview of the Published Articles
3. Conclusions
List of Contributions
- Wan, Q.; Liu, J.; Chen, S. An Inductorless Gain-Controllable Wideband LNA Based on CCCIIs. Micromachines 2022, 13, 1832. https://doi.org/10.3390/mi13111832.
- Zhou, S.; Yang, C.; Wang, J. Experimental Investigation of Relationship between Humidity Conditions and Degradation of Key Specifications of 0.1–1.2 GHz PA in 0.18 μm CMOS. Micromachines 2022, 13, 1162. https://doi.org/10.3390/mi13081162.
- Hamid, S.S.; Mariappan, S.; Rajendran, J.; Rawat, A.S.; Rhaffor, N.A.; Kumar, N.; Nathan, A.; Yarman, B.S. A State-of-the-Art Review on CMOS Radio Frequency Power Amplifiers for Wireless Communication Systems. Micromachines 2023, 14, 1551. https://doi.org/10.3390/mi14081551.
- Gao, J.; Wang, X.; Han, F.; Wan, J.; Gu, W. Analysis and Design of a Non-Magnetic Bulk CMOS Passive Circulator Using 25% Duty-Cycle Clock. Micromachines 2023, 14, 33. https://doi.org/10.3390/mi14010033.
- He, F.; Ding, Y.; Xu, Z.; Ni, M.; Tian, Y.; Zhang, Z.; Shi, Z.; Wang, K.; Xie, Q.; Wang, Z. A D-Band Direct-Conversion IQ Receiver with 28 dB CG and 7.3 dB NF in 130 nm SiGe Process. Micromachines 2023, 14, 87. https://doi.org/10.3390/mi14010087.
- Yang, Y.; Lv, S.; Li, X.; Wang, X.; Wang, Q.; Yuan, Y.; Liang, S.; Zhang, F. An Ultra-Low-Power Analog Multiplier–Divider Compatible with Digital Code for RRAM-Based Computing-in-Memory Macros. Micromachines 2023, 14, 1482. https://doi.org/10.3390/mi14071482.
- Huang, P.; Li, B.; Wei, M.; Hao, X.; Chen, X.; Huang, X.; Huang, W.; Zhou, S.; Wen, X.; Xie, S.; et al. Electromagnetic Susceptibility Analysis of the Operational Amplifier to Conducted EMI Injected through the Power Supply Port. Micromachines 2024, 15, 121. https://doi.org/10.3390/mi15010121.
- Tyaginov, S.; Bury, E.; Grill, A.; Yu, Z.; Makarov, A.; Keersgieter, A.D.; Vexler, M.; Vandemaele, M.; Wang, R.; Spessot, A.; et al. Compact Physics Hot-Carrier Degradation Model Valid over a Wide Bias Range. Micromachines 2023, 14, 2018. https://doi.org/10.3390/mi14112018.
- Dong, H.; Ding, Y.; Wang, H.; Pan, X.; Zhou, M.; Zhang, Z. Design of a Novel Compact Bandpass Filter Based on Low-Cost through-Silicon-Via Technology. Micromachines 2023, 14, 1251. https://doi.org/10.3390/mi14061251.
- Wang, X.; Han, J.; Wang, C.; Xie, M.; Liu, P.; Cao, Y.; Jing, F.; Wang, F.; Su, Y.; Meng, X. Beam Scanning and Capture of Micro Laser Communication Terminal Based on MEMS Micromirrors. Micromachines 2023, 14, 1317. https://doi.org/10.3390/mi14071317.
Funding
Conflicts of Interest
References
- Huo, Q.; Yang, Y.; Wang, Y.; Lei, D.; Fu, X.; Ren, Q.; Xu, X.; Luo, Q.; Xing, G.; Chen, C.; et al. A computing-in-memory macro based on three-dimensional resistive random-access memory. Nat. Electron. 2022, 5, 469–477. [Google Scholar] [CrossRef]
- Sadhu, B.; Tousi, Y.; Hallin, J.; Sahl, S.; Reynolds, S.K.; Renstrom, O.; Sjogren, K.; Haapalahti, O.; Mazor, N.; Bokinge, B.; et al. A 28-GHz 32-element TRX phased-array IC with concurrent dual-polarized operation and orthogonal phase and gain control for 5G communications. IEEE J. Solid-State Circuits 2017, 52, 3373–3391. [Google Scholar] [CrossRef]
- Naghavi, S.; Gao, J.; Stadius, K.; Ryynänen, J. A Compact and Wideband mmWave Passive CMOS Circulator Based on Switched All-Pass Networks. IEEE Microw. Wireless Technol. Lett. 2024, 34, 41–44. [Google Scholar] [CrossRef]
- Ghosh, S.; Goh, D.; Koh, Y.; Sharma, J.; Toh, W.; Chen, W.; Zhang, Y.; Ng, E.; Lal, A.; Lee, J. Wake-Up IoT Wireless Sensing Node Based on a Low-G Threshold mems Inertial Switch with Reliable Contacts. In Proceedings of the IEEE 36th International Conference on Miro Electro Mechanical Systems (MEMS 2023), Munich, Germany, 15–19 January 2023; pp. 491–494. [Google Scholar] [CrossRef]
- Gültepe, G.; Kanar, T.; Zihir, S.; Rebeiz, G.M. A 1024-Element Ku-Band SATCOM Phased-Array Transmitter with 45-dBW Single-Polarization EIRP. IEEE Trans. Microw. Theory Tech. 2021, 69, 4157–4168. [Google Scholar] [CrossRef]
- Wang, Y.; You, D.; Fu, X.; Nakamura, T.; Fadila, A.; Someya, T.; Kawaguchi, A.; Qiu, J.; Pang, J.; Yanagisawa, K.; et al. A Ka-Band SATCOM Transceiver in 65-nm CMOS with High-Linearity TX and Dual-Channel Wide-Dynamic-Range RX for Terrestrial Terminal. IEEE J. Solid-State Circuits 2022, 57, 356–370. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M.; Ding, Y.; Wang, H.; Wang, H.; Chen, Z.; Xie, D. Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption. InfoMat 2022, 4, 10. [Google Scholar] [CrossRef]
- Yang, B.; Ding, Y.; Cheng, Z.; Ren, A.; Xiao, L.; Yan, Y.; Zhang, Z.; Chen, Z. Modeling and characterization of annealing-Induced Cu protrusion of TSVs with polyimide liner considering diffusion creep behavior. IEEE Trans. Electron Devices 2022, 99, 695–701. [Google Scholar] [CrossRef]
- Wang, Z. Microsystems Using Three-Dimensional Integration and TSV Technologies: Fundamentals and Applications. Microelectron. Eng. 2019, 210, 35–64. [Google Scholar] [CrossRef]
- Nagulu, A.; Zhuang, Y.; Yuan, M.; Garikapati, S.; Krishnaswamy, H. A Third-Order Quasi-Elliptic N-Path Filter With Enhanced Linearity through Clock Boosting. IEEE J. Solid-State Circuits 2023, 58, 3351–3363. [Google Scholar] [CrossRef]
- Sun, S.; Deng, W.; Jia, H.; Wu, R.; Li, C.; Wang, Z.; Chen, Z.; Chi, B. A Wide Tuning Range Dual-Core Quad-Mode Orthogonal-Coupled VCO with Concurrently Dual-Output Using Parallel 8-Shaped Resonator. IEEE Trans. Microw. Theory Tech. 2023, 71, 2040–2054. [Google Scholar] [CrossRef]
- Wan, J.; Li, X.; Fei, Z.; Han, F.; Li, X.; Wang, X.; Chen, Z. 30-GHz Low-Phase-Noise Scalable Multicore Class-F Voltage-Controlled Oscillators Using Coupled-Line-Based Synchronization Topology. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1183–1186. [Google Scholar] [CrossRef]
- Shan, Y.; Qian, L.; Wang, J.; Wang, K.; Zhou, P.; Li, W.; Shen, W. Driving Principle and Stability Analysis of Vertical Comb-Drive Actuator for Scanning Micromirrors. Micromachines 2024, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Z.; Xiao, L.; Hao, Y.; Wang, H.; Ding, Y.; Zhang, Z. Fabrication and Electrical Characterization of High Aspect Ratio through-Silicon Vias with Polyimide Liner for 3D Integration. Micromachines 2022, 13, 1147. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Ren, A.; Ding, Y.; Xiao, L.; Pan, T.; Yan, Y.; Jiao, W.; Xie, H. A robust lateral shift free (LSF) electrothermal micromirror with flexible multimorph beams. Microsyst. Nanoeng. 2023, 9, 108. [Google Scholar] [CrossRef]
- Ren, A.; Ding, T.; Yang, H.; Pan, T.; Zhang, Y.; Xie, H. An electrothermal micromirror array integrated with thermal convection-based mirror position sensors. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2024), Austin, TX, USA, 21–25 January 2024. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z. Editorial for the Special Issue on State-of-the-Art CMOS and MEMS Devices. Micromachines 2024, 15, 327. https://doi.org/10.3390/mi15030327
Chen Z. Editorial for the Special Issue on State-of-the-Art CMOS and MEMS Devices. Micromachines. 2024; 15(3):327. https://doi.org/10.3390/mi15030327
Chicago/Turabian StyleChen, Zhiming. 2024. "Editorial for the Special Issue on State-of-the-Art CMOS and MEMS Devices" Micromachines 15, no. 3: 327. https://doi.org/10.3390/mi15030327
APA StyleChen, Z. (2024). Editorial for the Special Issue on State-of-the-Art CMOS and MEMS Devices. Micromachines, 15(3), 327. https://doi.org/10.3390/mi15030327