Simulation and Optimization of Surface Roughness and Process Performance during Machining of HSS by Micro-WEDM Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Conditions of the Experiment
2.2. Statistical Analysis of Measured Values
2.3. Regression and Optimization Analysis of the Design
3. Results and Discussion
3.1. The Design of Mathematical Models for Minimizing the Roughness Parameter Ra of the Machined Surface during Micro-WEDM of HSS
3.2. Design of Mathematical Models for Maximizing the Productivity Parameter MRR in Micro-WEDM of HSS
3.3. Optimization of the Output Qualitative Parameter Ra of the Machined Surface with Regard to Maximizing the Performence of the Electrical Discharge Process in Micro-WEDM of HSS
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
HRC | Rockwell hardness |
HSS | high speed steels |
IC | index correlation |
MRR | material removal rate |
Ra | parameter of surface roughness (µm) |
S(A) | function expressing the sum of squared differences |
I | peak current (A) |
ton | pulse on-time duration (µs) |
toff | pulse off-time duration (µs) |
U | voltage of discharge (V) |
y | desired value function |
x | measured values |
xmin/max | lower/upper response limit values |
Micro-WEDM | micro-wire electrical discharge machining |
References
- Nadda, R.; Nirala, C.K. Recent developments in spark erosion–based machining processes. Adv. Mach. Finish. 2021, 177–215. [Google Scholar] [CrossRef]
- Masuzawa, T.; Okajima, K.; Taguchi, T.; Fujino, M. EDM-Lathe for Micromachining. CIRP Ann. 2002, 51, 355–358. [Google Scholar] [CrossRef]
- Sahu, D.R.; Mandal, A. Critical analysis of surface integrity parameters and dimensional accuracy in powder-mixed EDM. Mater. Manuf. Process. 2020, 35, 430–441. [Google Scholar] [CrossRef]
- Oniszczuk-Swiercz, D.; Swiercz, R.; Chmielewski, T.; Salacinski, T. Experimental investigation of influence WEDM parameters on surface roughness and flatness deviation. Metal 2020, 29, 611–617. [Google Scholar]
- Gong, Y.D.; Sun, Y.; Wen, X.L.; Zhou, Y.G.; Liu, Y. Experimental study on accuracy and surface quality of TC2 in LS-WEDM multiple cuts. J. Braz. Soc. Mech. Sci. Eng. 2016, 38, 2421–2433. [Google Scholar] [CrossRef]
- Mouralova, K.; Kovar, J.; Klakurkova, L.; Prokes, T.; Horynova, M. Comparison of morphology and topography of surfaces of WEDM machined structural materials. Measurement 2017, 104, 12–20. [Google Scholar] [CrossRef]
- Sharma, N.; Khanna, R.; Gupta, R. Multi quality characteristics of WEDM process parameters with RSM. Procedia Eng. 2013, 64, 710–719. [Google Scholar] [CrossRef]
- Dodun, O.; Slătineanu, L.; Nagîț, G.; Hrițuc, A.; Mihalache, A.M.; Beșliu-Băncescu, I. WEDM-generated slot width variation modelling. Micromachines 2022, 13, 1231. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.H.; Newman, S.T.; Rahimifard, S.; Allen, R.D. State of the art in wire electrical discharge machining (WEDM). Int. J. Mach. Tools Manuf. 2004, 44, 1247–1259. [Google Scholar] [CrossRef]
- Fassi, F.; Modica, F. Editorial for the special issue on micro-electro discharge machining: Principles, Recent advancements and applications, volume II. Micromachines 2023, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Maher, I.; Sarhan, A.A.D.; Hamdi, M. Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining. Int. J. Adv. Manuf. Technol. 2015, 76, 329–351. [Google Scholar] [CrossRef]
- Mouralova, K.; Benes, L.; Prokes, T.; Zahradnicek, R.; Fries, J.; Plichta, T. Analysis of the machinability of different types of sintered carbides with WEDM in both water and oil baths. Int. J. Adv. Manuf. Technol. 2023, 125, 2705–2715. [Google Scholar] [CrossRef]
- Mičietová, A.; Neslušan, M.; Čilliková, M. Influence of surface geometry and structure after non-conventional methods of parting on the following milling operations. Manuf. Technol. 2013, 13, 199–204. [Google Scholar] [CrossRef]
- Simkulet, V.; Mitaľová, Z.; Lehocká, D.; Kočiško, M.; Manduľák, D. Evaluation of Fracture Surface Samples by Impact Energy Test Prepared after DMLS Additive Manufacturing Technology; SAS: Košice, Slovakia, 2017; pp. 82–83. [Google Scholar]
- Pollak, M.; Kocisko, M.; Basistova, A.; Hlavata, S. Production of fiber as an input material for the 3D printing process. MM Sci. J. 2021, 6, 4414–4419. [Google Scholar] [CrossRef]
- Mascenik, J.; Pavlenko, S. Determination of stress and deformation during laser welding of aluminium alloys with the PC support. MM Sci. J. 2020, 2020, 4104–4107. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D. Experimental Investigation of Surface Layer Properties of High Thermal Conductivity Tool Steel after Electrical Discharge Machining. Metals 2017, 7, 550. [Google Scholar] [CrossRef]
- Židek, K.; Piteľ, J.; Adámek, M.; Lazorík, P.; Hošovský, A. Digital Twin of Experimental Smart Manufacturing Assembly System for Industry 4.0 Concept. Sustainability 2020, 12, 3658. [Google Scholar] [CrossRef]
- Świercz, R.; Oniszczuk-Świercz, D.; Zawora, J.; Marczak, M. Investigation of the Influence of Process Parameters on Shape Deviation after Wire Electrical Discharge Machining. Arch. Metall. Mater. 2019, 64, 1457–1462. [Google Scholar] [CrossRef]
- Yan, M.T.; Wang, P.W.; Lai, J.C. Improvement of part straightness accuracy in rough cutting of wire EDM through a mechatronic system design. Int. J. Adv. Manuf. Technol. 2016, 84, 2623–2635. [Google Scholar] [CrossRef]
- Straka, Ľ.; Čorný, I.; Piteľ, J.; Hašová, S. Statistical Approach to Optimize the Process Parameters of HAZ of Tool Steel EN X32CrMoV12-28 after Die-Sinking EDM with SF-Cu Electrode. Metals 2017, 7, 35. [Google Scholar] [CrossRef]
- Wang, J.; Sánchez, J.A.; Izquierdo, B.; Ayesta, I. Experimental and numerical study of crater volume in wire electrical discharge machining. Materials 2020, 13, 577. [Google Scholar] [CrossRef]
- Gorgani, H.H.; Jahazi, A.; Pak, A.J.; Shabani, S. A hybrid algorithm for adjusting the input parameters of the wirecut EDM machine in order to obtain maximum customer satisfaction. SN Appl. Sci. 2023, 5, 37. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Kozochkin, M.P.; Gurin, V.D.; Malakhinsky, A.P.; Porvatov, A.N.; Melnik, Y.A. Display of WEDM quality indicators of heat-resistant alloy processing in acoustic emission parameters. Sensors 2023, 23, 8288. [Google Scholar] [CrossRef]
- Dzionk, S.; Siemiatkowski, M.S. Studying the effect of working conditions on WEDM machining performance of super alloy Inconel 617. Machines 2020, 8, 54. [Google Scholar] [CrossRef]
- Mouralova, K.; Zahradnicek, R.; Houska, P. Evaluation of surface quality of X210Cr12 steel for forming tools machined by WEDM. MM Sci. J. 2016, 5, 1366–1369. [Google Scholar] [CrossRef]
- Khosravi, A.; Rajabzadeh, M.; Zaloga, V.; Dyadyura, I. Customer knowledge management in enterprise software development companies: Organizational, Human and Technological Perspective. Manag. Syst. Prod. Eng. 2022, 30, 291–297. [Google Scholar] [CrossRef]
- Nowicki, R.; Świercz, R.; Oniszczuk-Świercz, D.; Rozenek, M. Experimental investigation of technological indicators and surface roughness of hastelloy C-22 after electrical discharge machining using POCO graphite electrodes. Materials 2022, 15, 5631. [Google Scholar] [CrossRef]
- Jabbaripour, B.; Sadeghi, M.H.; Faridvand, S.; Shabgard, M.R. Investigating the effects of EDM parameters on surface integrity, MRR and TWR in machining of Tie6ALe4V. Mach. Sci. Technol. 2012, 16, 419–444. [Google Scholar] [CrossRef]
- Panda, A.; Anisimov, V.M.; Anisimov, V.V.; Diadiura, K.O.; Pandova, I.V.E.T.A. Increasing of wear resistance of linear block-polyurethanes by thermal processing methods. MM Sci. J. 2021, 10, 731–4735. [Google Scholar] [CrossRef]
- Straka, L.; Pitel, J.; Corny, I. Influence of the main technological parameters and material properties of the workpiece on the geometrical accuracy of the machined surface at WEDM. Int. J. Adv. Manuf. Technol. 2021, 115, 3065–3087. [Google Scholar] [CrossRef]
- Kiyak, M. Investigation of effects of cutting parameters on surface quality and hardness in the wire-EDM process. Int. J. Adv. Manuf. Technol. 2022, 119, 647–655. [Google Scholar] [CrossRef]
- Tosun, N.; Cogun, C.; Tosun, G. A study on kerf and material removal rate in WEDM based on Taguchi method. J. Mater. Process. Technol. 2004, 152, 316–322. [Google Scholar] [CrossRef]
- Surya, V.R.; Kumar, K.V.; Keshavamurthy, R.; Ugrasen, G.; Ravindra, H. Prediction of machining characteristics using artificial neural network in wire EDM of Al7075 based in-situ composite. Mater. Today Proc. 2017, 4, 203–212. [Google Scholar] [CrossRef]
- Thankachan, T.; Prakash, K.S.; Malini, R.; Ramu, S.; Sundararaj, P.; Rajandran, S.; Rammasamy, D.; Jothi, S. Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey Relational Analysis and Artificial Neural Networks. Appl. Surf. Sci. 2019, 472, 22–35. [Google Scholar] [CrossRef]
- Chaudhari, R.; Vora, J.; Parikh, D.; Wankhede, V.; Khanna, S. Multi-response Optimization of WEDM Parameters Using an Integrated Approach of RSM–GRA Analysis for Pure Titanium. J. Inst. Eng. Ser. D 2020, 101, 117–126. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, D.; Xu, J.; Lin, J.; Lei, J.; Xu, B.; Wu, X.; Wang, X. Processing Characteristics of Micro Electrical Discharge Machining for Surface Modification of TiNi Shape Memory Alloys Using a TiC Powder Dielectric. Micromachines 2020, 11, 1018. [Google Scholar] [CrossRef] [PubMed]
- Mascenik, J.; Pavlenko, S. Controlled testing of belt transmissions at different loads. MM Sci. J. 2021, 12, 5497–5501. [Google Scholar] [CrossRef]
- Hašová, S.; Straka, Ľ. Design and verification of software for simulation of selected quality indicators of machined surface after WEDM. Acad. J. Manu. Eng. 2016, 14, 13–20. [Google Scholar]
- Kozak, J.; Rajurkar, K.P.; Chandarana, N. Machining of low electrical conductive materials by wire electrical discharge machining (WEDM). J. Mater. Process. Technol. 2004, 149, 266. [Google Scholar] [CrossRef]
- Pradhan, B.B.; Masanta, M.; Sarkar, B.R.; Bhattacharyya, B. Investigation of electro-discharge micro-machining of titanium super alloy. Int. J. Adv. Manuf. Technol. 2009, 41, 1094–1106. [Google Scholar] [CrossRef]
- Meena, V.K.; Azad, M.S. Grey relational analysis of micro-EDM machining of Ti-6Al-4V alloy. Mater. Manuf. Process. 2012, 27, 973–977. [Google Scholar] [CrossRef]
- Aggarwal, V.; Khangura, S.S.; Garg, R.K. Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. Int. J. Adv. Manuf. Technol. 2015, 79, 31–47. [Google Scholar] [CrossRef]
- Mouralova, K.; Bednar, J.; Benes, L.; Prokes, T.; Zahradnicek, R.; Fries, J. Mathematical models for machining optimization of Ampcoloy 35 with different thicknesses using WEDM to improve the surface properties of mold parts. Materials 2023, 16, 100. [Google Scholar] [CrossRef]
- Oniszczuk-Świercz, D.; Świercz, R.; Michna, Š. Evaluation of prediction models of the microwire edm process of Inconel 718 using ANN and RSM methods. Materials 2022, 15, 8317. [Google Scholar] [CrossRef] [PubMed]
- Simkulet, V.; Duplakova, D.; Kovalcikova, A.; Hatala, M.; Botko, F.; Mitalova, Z.; Vandzura, R. Evaluation of tribological characteristics of material prepared by DMLS technology. MM Sci. J. 2021, 10, 4941–4945. [Google Scholar] [CrossRef]
- Panda, A.; Chernobrovchenko, V.; Dyadyura, K.; Sukhodub, L.; Kumeda, M.; Behun, M. Selection of materials hydroxylapatite using the method of analysis of hierarchy. MM Sci. J. 2023, 6, 6472–6477. [Google Scholar] [CrossRef]
- Rafaqat, M.; Mufti, N.A.; Ahmed, N.; Rehman, A.U.; AlFaify, A.Y.; Farooq, M.U.; Saleh, M. Hole-making in D2-Grade steel tool by electric-discharge machining through non-conventional electrodes. Processes 2022, 10, 1553. [Google Scholar] [CrossRef]
- Wang, G.; Han, F.A. Comparative study on the surface integrity of single-step and multi-step sequential machining in electric discharge machining. Int. J. Adv. Manuf. Technol. 2021, 114, 1803–1817. [Google Scholar] [CrossRef]
- Pi, V.N.; Tam, D.T.; Cuong, N.M.; Tran, T.H. Multi-objective optimization of PMEDM process parameters for processing cylindrical shaped parts using taguchi method and grey relational analysis. Int. J. Mech. Prod. Eng. Res. Develop. 2020, 10, 669–678. [Google Scholar]
- Mahapatra, S.S.; Patnaik, A. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method. Int. J. Adv. Manuf. Technol. 2007, 34, 911–925. [Google Scholar] [CrossRef]
- Tao, J.; Ni, J.; Shih, A.J. Modeling of the anode crater formation in electrical discharge machining. J. Manuf. Sci. Eng. Trans. Asme 2012, 134, 011002. [Google Scholar] [CrossRef]
- Zhang, Y.; Guo, S.; Zhang, Z.; Huang, H.; Li, W.; Zhang, G.; Huang, Y. Simulation and experimental investigations of complex thermal deformation behavior of wire electrical discharge machining of the thin-walled component of Inconel 718. J. Mater. Process Technol. 2019, 270, 306–322. [Google Scholar] [CrossRef]
- Vignesh, M.; Ramanujam, R. Numerical modelling and experimental validation of crater formation in WEDM hybrid turning of Ti-6Al-4V alloy. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 392–404. [Google Scholar] [CrossRef]
- Nain, S.S.; Garg, D.; Kumar, S. Prediction of the performance characteristics of WEDM on Udimet-L605 using different modelling techniques. Mater. Today Proc. 2017, 4, 546–556. [Google Scholar] [CrossRef]
- Babu, T.V.; Reddy, S.M.; Dhanaraj, B.; Raju, P.S. Prediction of Optimal Conditions for WEDM of Al 6063/ZrSiO4 (p) Metal Matrix Composites using Response Surface Methodology (RSM). Int. J. Eng. Manag. Res. 2017, 7, 380–384. [Google Scholar]
- Phate, M.R.; Toney, S.B. Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network. Eng. Sci. Technol. Int. J. 2019, 22, 468–476. [Google Scholar] [CrossRef]
- Straka, L.; Dittrich, G. Influence of tool steel properties on surface quality after electrical discharge machining by wire electrode. Int. J. Adv. Manuf. Technol. 2020, 106, 1617–1632. [Google Scholar] [CrossRef]
- Kopytowski, A.; Świercz, R.; Oniszczuk-Świercz, D.; Zawora, J.; Kuczak, J.; Żrodowski, Ł. Effects of a New Type of Grinding Wheel with Multi-Granular Abrasive Grains on Surface Topography Properties after Grinding of Inconel 625. Materials 2023, 16, 716. [Google Scholar] [CrossRef]
- Selvarajan, L.; Venkataramanan, K. Si3N4–TiN conductive ceramic composites: Topography on EDMed surfaces and precise drilled holes. Mater. Sci. Technol. 2023, 39, 2006–2017. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chen, Y.F.; Lin, C.T.; Tzeng, H.J. Electrical discharge machining (EDM) characteristics associated with electrical discharge energy on machining of cemented tungsten carbide. Mater. Manuf. Process. 2008, 23, 391–399. [Google Scholar] [CrossRef]
- Seshaiah, S.; Sampathkumar, D.; Mariappan, M.; Mohankumar, A.; Balachandran, G.; Kaliyamoorthy, M.; Rajendran, B.; Gopal, R. Optimization on Material Removal Rate and Surface Roughness of Stainless Steel 304 Wire Cut EDM by Response Surface Methodology. Adv. Mater. Sci. Eng. 2022, 2022, 6022550. [Google Scholar] [CrossRef]
- Singh, D.P.; Mishra, S. Effect of different reinforcements in wire electric discharge machining of various geometrical profiles in metal matrix composites. Int. J. Interact. Des. Manuf. 2023, 18, 351–373. [Google Scholar] [CrossRef]
- Rimár, M.; Abraham, M.; Fedák, M.; Kulikov, A.; Oravec, P.; Váhovský, J. Methods of increasing the efficiency of cogeneration based energy equipment. MM Sci. J. 2019, 6, 2935–2938. [Google Scholar] [CrossRef]
- Singh, V.; Sharma, A.K.; Goyal, A.; Saxena, K.K.; Negi, P.; Rao, P.C.S. Electric discharge machining performance measures and optimisation: A review. Adv. Mater. Process. Technol. 2023. [Google Scholar] [CrossRef]
- Pramanik, A.; Basak, A.K.; Prakash, C. Understanding the wire electrical discharge machining of Ti6Al4V alloy. Heliyon 2019, 5, e01473. [Google Scholar] [CrossRef]
- Vagaská, A.; Gombár, M.; Straka, Ľ. Selected mathematical optimization methods for solving problems of engineering practice. Energies 2022, 15, 2205. [Google Scholar] [CrossRef]
- Rani, S.S.; Sundari, V.K.; Jose, P.S.H.; Sivaranjani, S.; Stalin, B.; Pritima, D. Enrichment of material subtraction rate on Eglin steel using electrical discharge machining process through modification of electrical circuits. Mater. Today 2020, 33, 4428–4430. [Google Scholar] [CrossRef]
- Rouniyar, A.K.; Shandilya, P. Fabrication and experimental investigation of magnetic field assisted powder mixed electrical discharge machining on machining of aluminum 6061 alloy. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 2283–2291. [Google Scholar] [CrossRef]
- Evin, E.; Tomáš, M.; Kmec, J. Optimization of electro-discharge texturing parameters for steel sheets’ finishing rollers. Materials 2020, 13, 1223. [Google Scholar] [CrossRef]
- Kosaraju, S.; Babu Bobba, P.; Salkuti, S.R. Optimization and microstructural studies on the machining of Inconel 600 in WEDM using untreated and cryogenically treated zinc electrodes. Materials 2023, 16, 3181. [Google Scholar] [CrossRef]
- Ming, W.; Guo, X.; Zhang, G.; Hu, S.; Liu, Z.; Xie, Z.; Zhang, S.; Duan, L. Optimization of process parameters and performance for machining Inconel 718 in renewable dielectrics. Alex. Eng. J. 2023, 79, 164–179. [Google Scholar] [CrossRef]
- Raksiri, C.; Chatchaikulsiri, P. CNC Wire-Cut Parameter Optimized Determination of the Stair Shape Workpiece. Int. J. Mech. Mechatron. Eng. 2010, 4, 924–929. [Google Scholar]
- Meshram, D.B.; Puri, Y.M. Optimized curved electrical discharge machining-based curvature channel. J. Braz. Soc. Mech. Sci. 2020, 42, 82. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, W.; Zhan, X.; Ding, L.; Zhou, J. Parameter optimisation of laser cladding repair for an Invar alloy mould. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 1859–1871. [Google Scholar] [CrossRef]
- Kuruvila, N.; Ravindra, H.V. Parametric influence and optimization of wire EDM of Hot die steel. Mach. Sci. Technol. 2011, 15, 47–75. [Google Scholar] [CrossRef]
- Saedon, J.B.; Jaafar, N.; Jaafar, R.; Saad, N.H.; Kasim, M.S. Modeling and multi-response optimization on WEDM Ti6Al4V. Appl. Mech. Mater. 2014, 510, 123–129. [Google Scholar] [CrossRef]
- Takale, A.M.; Chougule, N.K.; Selmokar, P.H.; Gawari, M.G. Multi-response optimization of micro-WEDM process parameters of Ti49.4-Ni50.6 shape memory alloy for orthopedic implant application. Adv. Mater. Res. 2018, 1150, 1–21. [Google Scholar] [CrossRef]
- Yu, T.; Zhao, J. Quantifying the mechanisms of keyhole pore evolutions and the role of metal-vapor condensation in laser powder bed fusion. Addit. Manuf. 2023, 72, 103642. [Google Scholar] [CrossRef]
- Grigoriev, S.N.; Pivkin, P.M.; Kozochkin, M.P.; Volosova, M.A.; Okunkova, A.A.; Porvatov, A.N.; Zelensky, A.A.; Nadykto, A.B. Physicomechanical nature of acoustic emission preceding wire breakage during wire electrical discharge machining (WEDM) of advanced cutting tool materials. Metals 2021, 11, 1865. [Google Scholar] [CrossRef]
- Van, D.N.; Van, B.P.; Huu, P.N. Application of Deng’s similarity-based analytic hierarchy process approach in parametric optimization of the electrical discharge machining process of SDK11 die steel. Trans. Can. Soc. Mech. Eng. 2020, 44, 294–310. [Google Scholar] [CrossRef]
Properties of Steel | HSS | ||
---|---|---|---|
EN HS 3-3-2 | EN HS 10-5-3-10 | EN HS6-5-2C | |
Specific electric resistence ρ (Ω·mm2·m−1) | 0.65 | 0.8 | 0.54 |
Thermal conductivity at 20 °C κ (W·m−1·K−1) | 20 | 19 | 21 |
Tensile strength Rm (MPa) (in natural state) | 757 | 790 | 1158 |
Achievable hardness after refining HRC | 65 | 67 | 62 |
Marking of Steel | Chemical Composition in % | |||||||
---|---|---|---|---|---|---|---|---|
C | Mn | Si | Cr | Mo | V | W | Co | |
EN HS 3-2-2 | 0.95–1.03 | max.0.45 | max.0.45 | 3.8–4.5 | 2.5–2.8 | 2.2–2.5 | 2.7–3 | - |
EN HS 10-5-3-10 | 1.15–1.30 | max.0.45 | max.0.45 | 3.8–4.6 | 3.5–4.3 | 3.0–3.7 | 9.5–11.0 | 10.0–11.5 |
EN HS6-5-2C | 0.86–0.94 | max.0.40 | max.0.45 | 3.80–4.50 | 4.70–5.20 | 1.70–2.10 | 5.90–6.70 | - |
MTP | Setting Level | Parameter Setting Value | The Expected Value of the Parameter | |
---|---|---|---|---|
MRR | Ra | |||
Peak current I (A) | high | 8.0 | high | high |
middle | 6.0 | |||
low | 2.0 | low | low | |
Pulse on-time duration ton (μs) | high | 40.0 | high | high |
middle | 20.0 | |||
low | 5.0 | low | low | |
Pulse off-time duration toff (μs) | high | 15.0 | low | low |
middle | 9.0 | |||
low | 3.0 | high | high | |
Voltage of discharge U (V) | high | 90 | low | low |
middle | 85 | |||
low | 70 | high | high |
Basic Technical Parameters of Electrical Discharge Machine CHMER EDM G32F | |
---|---|
Portal X/Y/Z | 360 × 250 × 220 mm |
Workpiece size X/Y/Z | 725 × 560 × 215 mm |
Workpiece weight | 300 kg |
Wire diameter range | 0.015–0.3 |
Wire feed rate | 300 mm/s |
Wire tension | 300–2500 gf |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Straka, Ľ.; Čorný, I. Simulation and Optimization of Surface Roughness and Process Performance during Machining of HSS by Micro-WEDM Technology. Micromachines 2024, 15, 372. https://doi.org/10.3390/mi15030372
Straka Ľ, Čorný I. Simulation and Optimization of Surface Roughness and Process Performance during Machining of HSS by Micro-WEDM Technology. Micromachines. 2024; 15(3):372. https://doi.org/10.3390/mi15030372
Chicago/Turabian StyleStraka, Ľuboslav, and Ivan Čorný. 2024. "Simulation and Optimization of Surface Roughness and Process Performance during Machining of HSS by Micro-WEDM Technology" Micromachines 15, no. 3: 372. https://doi.org/10.3390/mi15030372
APA StyleStraka, Ľ., & Čorný, I. (2024). Simulation and Optimization of Surface Roughness and Process Performance during Machining of HSS by Micro-WEDM Technology. Micromachines, 15(3), 372. https://doi.org/10.3390/mi15030372