Development of Fluorescent Sensors for Biorelevant Anions in Aqueous Media Using Positively Charged Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CdTe Quantum Dots
2.3. Optical Characterization
2.4. Evaluation of the Optical Response of CdTe-CYA QDs in the Presence of Different Anions
2.5. Determination of Detection Parameters
2.6. Selectivity
3. Results and Discussion
3.1. Characterization of CdTe-CYA QDs
3.2. Fluorescent Detection of Anions Using CdTe-CYA QDs
3.3. Analysis of the QDs’ Emission Profile after the Addition of the Anions
3.4. Selectivity of the Nanoprobe for Target Anions
3.5. Detection Mechanism of CdTe-CYA QDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sobhanan, J.; Rival, J.V.; Anas, A.; Sidharth Shibu, E.; Takano, Y.; Biju, V. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Adv. Drug Deliv. Rev. 2023, 197, 114830. [Google Scholar] [CrossRef]
- Xiong, H.; Wang, B.; Wen, W.; Zhang, X.; Wang, S. Fluorometric determination of copper(II) by using 3-aminophenylboronic acid-functionalized CdTe quantum dot probes. Microchim. Acta 2019, 186, 392. [Google Scholar] [CrossRef]
- Gan, Z.; Zhang, T.; Hu, Y.; Zhen, S.; Hu, X. A simple fluorescence-scattering ratiometric sensor for biothiols based on CdTe quantum dots. Sens. Actuators B Chem. 2023, 378, 133168. [Google Scholar] [CrossRef]
- Kailasa, S.K.; Vajubhai, G.N.; Koduru, J.R.; Park, T.J. Recent progress of nanomaterials for colorimetric and fluorescence sensing of reactive oxygen species in biological and environmental samples. Trends Environ. Anal. Chem. 2023, 37, e00196. [Google Scholar] [CrossRef]
- Li, G.; Liu, Z.; Gao, W.; Tang, B. Recent advancement in graphene quantum dots based fluorescent sensor: Design, construction and bio-medical applications. Coord. Chem. Rev. 2023, 478, 214966. [Google Scholar] [CrossRef]
- Pereira, G.; Monteiro, C.A.P.; Albuquerque, G.M.; Pereira, M.I.A.; Cabrera, M.P.; Cabral Filho, P.E.; Pereira, G.A.L.; Fontesa, A.; Santos, B.S. (Bio)conjugation Strategies Applied to Fluorescent Semiconductor Quantum Dots. J. Braz. Chem. Soc. 2019, 30, 2536–2561. [Google Scholar] [CrossRef]
- Ribeiro, J.F.F.; Pereira, M.I.A.; Assis, L.G.; Cabral Filho, P.E.; Santos, B.S.; Pereira, G.A.L.; Chaves, C.R.; Campos, G.S.; Sardi, S.I.; Pereira, G.; et al. Quantum dots-based fluoroimmunoassay for anti-Zika virus IgG antibodies detection. J. Photochem. Photobiol. B Biol. 2019, 194, 135–139. [Google Scholar] [CrossRef]
- Ribeiro, J.F.F.; Melo, J.R.S.; Santos, C.d.L.; Chaves, C.R.; Cabral Filho, P.E.; Pereira, G.; Santos, B.S.; Pereira, G.A.L.; Rosa, D.S.; Ribeiro, R.T.; et al. Sensitive Zika biomarker detection assisted by quantum dot-modified electrochemical immunosensing platform. Colloids Surf. B Biointerfaces 2023, 221, 112984. [Google Scholar] [CrossRef]
- Silva, F.O.; Carvalho, M.S.; Mendonça, R.; Macedo, W.A.A.; Balzuweit, K.; Reiss, P.; Schiavon, M.A. Effect of surface ligands on the optical properties of aqueous soluble CdTe quantum dots. Nanoscale Res. Lett. 2012, 7, 536. [Google Scholar] [CrossRef]
- Devi, B.L.; Chaitra, U.; Hathwara, S.; Kompa, A. Influence of starch capping effect on optical absorption and photoluminescence behaviour of ZnS nanoparticles. Inorg. Chem. Commun. 2023, 149, 110374. [Google Scholar] [CrossRef]
- Ebrahim, S.; Labeb, M.; Abdel-Fattah, T.; Soliman, M. CdTe quantum dots capped with different stabilizing agents for sensing of ochratoxin A. J. Lumin. 2017, 182, 154–159. [Google Scholar] [CrossRef]
- Snee, P.T. The Role of Colloidal Stability and Charge in Functionalization of Aqueous Quantum Dots. Acc. Chem. Res. 2018, 51, 2949–2956. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.S.V.; Teixeira, L.S.G.; Korn, M.G.A.; Santana, R.M.M. Evaluation of the Direct Interaction between Amino Acids and Glutathione-Coated CdTe Quantum Dots and Application in Urinalysis for Histidine Determination. J. Braz. Chem. Soc. 2021, 32, 588–598. [Google Scholar] [CrossRef]
- Albuquerque, G.M.; Souza-Sobrinha, I.; Coiado, S.D.; Santos, B.S.; Fontes, A.; Pereira, G.A.L.; Pereira, G. Quantum Dots and Gd3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging. Top. Curr. Chem. 2021, 379, 12. [Google Scholar] [CrossRef] [PubMed]
- Castro, R.C.; Ribeiro, D.S.M.; Santos, J.L.M. Visual detection using quantum dots sensing platforms. Coord. Chem. Rev. 2021, 429, 213637. [Google Scholar] [CrossRef]
- Silvi, S.; Credi, A. Luminescent sensors based on quantum dot–molecule conjugates. Chem. Soc. Rev. 2015, 44, 4275–4289. [Google Scholar] [CrossRef]
- Anas, N.A.A.; Fen, Y.W.; Omar, N.A.S.; Daniyal, W.M.E.M.M.; Ramdzan, N.S.M.; Saleviter, S. Development of Graphene Quantum Dots-Based Optical Sensor for Toxic Metal Ion Detection. Sensors 2019, 19, 3850. [Google Scholar] [CrossRef]
- Yin, H.; Truskewycz, A.; Cole, I.S. Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions. Microchim. Acta 2020, 187, 336. [Google Scholar] [CrossRef]
- Tay, H.M.; Beer, P. Optical sensing of anions by macrocyclic and interlocked hosts. Org. Biomol. Chem. 2021, 19, 4652–4677. [Google Scholar] [CrossRef]
- Hein, R.; Beer, P.D.; Davis, J.J. Electrochemical Anion Sensing: Supramolecular Approaches. Chem. Rev. 2020, 120, 1888–1935. [Google Scholar] [CrossRef] [PubMed]
- Chua, M.H.; Shah, K.W.; Zhou, H.; Xu, J. Recent Advances in Aggregation-Induced Emission Chemosensors for Anion Sensing. Molecules 2019, 24, 2711. [Google Scholar] [CrossRef] [PubMed]
- Pengpumkiat, S.; Wu, Y.; Sumantakul, S.; Remcho, V.T. A Membrane-based Disposable Well-Plate for Cyanide Detection Incorporating a Fluorescent Chitosan-CdTe Quantum Dot. Anal. Sci. 2020, 36, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qian, J.; Mei, Q.; Yang, L.; He, L.; Liu, S.; Zhang, C.; Zhang, K. Imaging-based fluorescent sensing platform for quantitative monitoring and visualizing of fluoride ions with dual-emission quantum dots hybrid. Biosens. Bioelectron. 2019, 128, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Jindal, G.; Kaur, N. Fluorescent water-stable quantum dots possessing benzimidazole for the recognition of bisulfate in edible materials, soap, and medicine. J. Photochem. Photobiol. A Chem. 2022, 424, 113652. [Google Scholar] [CrossRef]
- Zhan, N.; Huang, Y.; Rao, Z.; Zhao, X.-L. Fast Detection of Carbonate and Bicarbonate in Groundwater and Lake Water by Coupled Ion Selective Electrode. Chin. J. Anal. Chem. 2016, 44, 355–360. [Google Scholar] [CrossRef]
- Bushinsky, S.M.; Takeshita, Y.; Williams, N.L. Observing Changes in Ocean Carbonate Chemistry: Our Autonomous Future. Curr. Clim. Chang. Rep. 2019, 5, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Verma, S.; Ravichandiran, V.; Ranjan, N. Selective, pH sensitive, “turn on” fluorescence sensing of carbonate ions by a benzimidazole. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119624. [Google Scholar] [CrossRef]
- Salem, J.K.; Draz, M.A. Synthesis and application of silver nanorods for the colorimetric detection of sulfate in water. Inorg. Chem. Commun. 2020, 116, 107900. [Google Scholar] [CrossRef]
- Sethupathi, M.; Muthusankar, G.; Thamilarasan, V.; Sengottuvelan, N.; Gopu, G.; Vinita, N.M.; Kumar, P.; Perdih, F. Macrocyclic “tet a” derived colorimetric sensor for the detection of mercury cations and hydrogen sulphate anions and its bio-imaging in living cells. J. Photochem. Photobiol. B Biol. 2020, 203, 111739. [Google Scholar] [CrossRef]
- Feng, L.; Wu, G.; Zhang, Z.; Tian, Z.; Li, B.; Cheng, J.; Yang, G. Improving denitrification performance of biofilm technology with salt-tolerant denitrifying bacteria agent for treating high-strength nitrate and sulfate wastewater from lab-scale to pilot-scale. Bioresour. Technol 2023, 387, 129696. [Google Scholar] [CrossRef]
- Viegas, I.M.A.; Santos, B.S.; Fontes, A.; Pereira, G.A.d.L.; Pereira, C.F. Multivariate optimization of optical properties of CdSe quantum dots obtained by a facile one-pot aqueous synthesis. Inorg. Chem. Front. 2019, 6, 1350–1360. [Google Scholar] [CrossRef]
- Matos, A.L.L.; Pereira, G.; Cabral Filho, P.E.; Santos, B.S.; Fontes, A. Delivery of cationic quantum dots using fusogenic liposomes in living cells. J. Photochem. Photobiol. B Biol. 2017, 171, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Dagtepe, P.; Chikan, V.; Jasinski, J.; Leppert, V.J. Quantized Growth of CdTe Quantum Dots; Observation of Magic-Sized CdTe Quantum Dots. J. Phys. Chem. C 2007, 111, 14977–14983. [Google Scholar] [CrossRef]
- Yu, W.W.; Qu, L.; Guo, W.; Peng, X. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15, 2854–2860. [Google Scholar] [CrossRef]
- Ramírez-Herrera, D.E.; Reyes-Cruzaley, A.P.; Dominguez, G.; Paraguay-Delgado, F.; Tirado-Guízar, A.; Pina-Luis, G. CdTe Quantum Dots Modified with Cysteamine: A New Efficient Nanosensor for the Determination of Folic Acid. Sensors 2019, 19, 4548. [Google Scholar] [CrossRef]
- Peng, L.; Guo, H.; Wu, N.; Liu, Y.; Wang, M.; Liu, B.; Tian, J.; Wei, X.; Yang, W. Ratiometric fluorescent sensor based on metal–organic framework for selective and sensitive detection of CO32−. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 299, 122844. [Google Scholar] [CrossRef]
- Adusumalli, V.N.K.B.; Koppisetti, H.V.S.R.M.; Madhukar, N.; Mondal, A.; Mahalingam, V. Gallic acid capped Tb3+-doped CaF2 nanocrystals: An efficient optical probe for the detection of carbonate and bicarbonate ions. J. Mater. Chem. C 2021, 9, 4267–4274. [Google Scholar] [CrossRef]
- Han, C.; Cui, Z.; Zou, Z.; Sabahaiti; Tian, D.; Li, H. Urea-type ligand-modified CdSe quantum dots as a fluorescence “turn-on” sensor for CO32− anions. Photochem. Photobiol. Sci. 2010, 9, 1269–1273. [Google Scholar] [CrossRef]
- Muniyasamy, H.; Chinnadurai, C.; Nelson, M.; Chinnamadhaiyan, M.; Ayyanar, S. Triazole-naphthalene based fluorescent chemosensor for highly selective naked eye detection of carbonate ion and real sample analyses. Inorg. Chem. Commun. 2021, 133, 108883. [Google Scholar] [CrossRef]
- Pacheco-Liñán, P.J.; Alonso-Moreno, C.; Carrillo-Hermosilla, F.; Garzón-Ruiz, A.; Martín, C.; Sáez, C.; Albaladejo, J.; Bravo, I. Novel Fluorescence Guanidine Molecules for Selective Sulfate Anion Detection in Water Complex Samples over a Wide pH Range. ACS Sens. 2021, 6, 3224–3233. [Google Scholar] [CrossRef] [PubMed]
- Bąk, K.M.; Masłowska, K.; Chmielewski, M.J. Selective turn-on fluorescence sensing of sulfate in aqueous–organic mixtures by an uncharged bis(diamidocarbazole) receptor. Org. Biomol. Chem. 2017, 15, 5968–5975. [Google Scholar] [CrossRef] [PubMed]
- Sen, B.; Mukherjee, M.; Pal, S.; Sen, S.; Chattopadhyay, P. A water soluble copper(ii) complex as a HSO4− ion selective turn-on fluorescent sensor applicable in living cell imaging. RSC Adv. 2015, 5, 50532–50539. [Google Scholar] [CrossRef]
- Phapale, D.; Kushwaha, A.; Das, D. A simple benzimidazole styryl-based colorimetric chemosensor for dual sensing application. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 214, 111–118. [Google Scholar] [CrossRef]
- WHO Guidelines Approved by the Guidelines Review Committee. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Noipa, T.; Tuntulani, T.; Ngeontae, W. Cu2+-modulated cysteamine-capped CdS quantum dots as a turn-on fluorescence sensor for cyanide recognition. Talanta 2013, 105, 320–326. [Google Scholar] [CrossRef]
- Tall, A.; da Costa, K.R.; de Oliveira, M.J.; Tapsoba, I.; Rocha, U.; Sales, T.O.; Goulart, M.O.F.; Santos, J.C.C. Photoluminescent nanoprobes based on thiols capped CdTe quantum dots for direct determination of thimerosal in vaccines. Talanta 2021, 221, 121545. [Google Scholar] [CrossRef] [PubMed]
- Krämer, J.; Kang, R.; Grimm, L.M.; De Cola, L.; Picchetti, P.; Biedermann, F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. [Google Scholar] [CrossRef]
- Xia, Y.-S.; Cao, C.; Zhu, C.-Q. Two distinct photoluminescence responses of CdTe quantum dots to Ag (I). J. Lumin. 2008, 128, 166–172. [Google Scholar] [CrossRef]
- Wang, G.-L.; Jiao, H.-J.; Zhu, X.-Y.; Dong, Y.-M.; Li, Z.-J. Novel switchable sensor for phosphate based on the distance-dependant fluorescence coupling of cysteine-capped cadmium sulfide quantum dots and silver nanoparticles. Analyst 2013, 138, 2000–2006. [Google Scholar] [CrossRef]
- Dhar, S.; Sen, B.; Mukhopadhyay, S.K.; Mukherjee, T.; Chattopadhyay, A.P.; Pramanik, S. CdS quantum dots embedded in PVP: Inorganic phosphate ion sensing in real sample and its antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 234, 118256. [Google Scholar] [CrossRef]
- Llano-Suárez, P.; Bouzas-Ramos, D.; Costa-Fernández, J.M.; Soldado, A.; Fernández-Argüelles, M.T. Near-infrared fluorescent nanoprobes for highly sensitive cyanide quantification in natural waters. Talanta 2019, 192, 463–470. [Google Scholar] [CrossRef]
- Rodrigues, S.S.M.; Ribeiro, D.S.M.; Soares, J.X.; Passos, M.L.C.; Saraiva, M.L.M.F.S.; Santos, J.L.M. Application of nanocrystalline CdTe quantum dots in chemical analysis: Implementation of chemo-sensing schemes based on analyte-triggered photoluminescence modulation. Coord. Chem. Rev. 2017, 330, 127–143. [Google Scholar] [CrossRef]
Anion | Sensor | Linear Range (μM) | LOD (μM) | LOQ (μM) | Reference |
---|---|---|---|---|---|
CO32− | Eu/CDs@UiO-66-(COOH)2 | 0–350 | 1.08 | - | [36] |
CaF-Tb3+ | 20–100 | 0.99 | - | [37] | |
Ureia derivative-CdSe | 0.1–100 | 0.023 | - | [38] | |
CdTe-CYA QDs | 43.0–123.5 | 12.9 | 43.0 | This work | |
HCO3− | CaF-Tb3+ | 20–100 | 2.15 | - | [37] |
Triazole-naphthalene | 2.5–32.5 | 1.8 | - | [39] | |
CdTe-CYA QDs | 107.3–430.6 | 32.2 | 107.3 | This work | |
SO42− | Guanidine dyes | 2.5–10 | 0.10 | - | [40] |
Bis(diamidocarbazole) | - | 1.0 | - | [41] | |
CdTe-CYA QDs | 35.0–147.8 | 10.5 | 35.0 | This work | |
HSO4− | ZnO QDs-benzimidazole | - | 0.0032 | - | [24] |
Quinazoline-based Co3+ complex | 0.32–12.5 | 0.32 | - | [42] | |
CdTe-CYA QDs | 6.5–123.5 | 2.0 | 6.5 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.J.B.; Pereira, C.F.; Pereira, G.; Pereira, G.A.L. Development of Fluorescent Sensors for Biorelevant Anions in Aqueous Media Using Positively Charged Quantum Dots. Micromachines 2024, 15, 373. https://doi.org/10.3390/mi15030373
Silva HJB, Pereira CF, Pereira G, Pereira GAL. Development of Fluorescent Sensors for Biorelevant Anions in Aqueous Media Using Positively Charged Quantum Dots. Micromachines. 2024; 15(3):373. https://doi.org/10.3390/mi15030373
Chicago/Turabian StyleSilva, Hitalo J. B., Claudete F. Pereira, Goreti Pereira, and Giovannia A. L. Pereira. 2024. "Development of Fluorescent Sensors for Biorelevant Anions in Aqueous Media Using Positively Charged Quantum Dots" Micromachines 15, no. 3: 373. https://doi.org/10.3390/mi15030373
APA StyleSilva, H. J. B., Pereira, C. F., Pereira, G., & Pereira, G. A. L. (2024). Development of Fluorescent Sensors for Biorelevant Anions in Aqueous Media Using Positively Charged Quantum Dots. Micromachines, 15(3), 373. https://doi.org/10.3390/mi15030373