Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel
Abstract
:1. Introduction
2. Experimental Method
2.1. Experimental Materials
2.2. Experimental Device
2.3. Microstructure and Mechanical Property Test Methods
3. Results and Discussion
3.1. Effect of Laser Power Parameters on Surface Roughness
3.2. Effect of Laser Scanning Speed Parameters on Surface Roughness
3.3. The Effect of Laser Processing Time on Surface Roughness
3.4. Comparison of the Effect of Laser/Electrochemical and Laser-Electrochemical Hybrid Polishing Processes
3.5. Comparison of Microhardness of Laser/Electrochemical and Laser-Electrochemical Hybrid Polishing
3.6. Comparison of Wear Resistance of Laser/Electrochemical and Laser-Electrochemical Hybrid Polishing
3.6.1. Friction Coefficient
3.6.2. Specific Wear Rate
3.6.3. Wear Morphology
4. Conclusions
- (1)
- Increasing the laser power and polishing time both contribute to improved surface flatness. However, excessively high laser power can generate bubbles, resulting in severe scattering and uneven surface polishing. Similarly, prolonged polishing time may cause excessive corrosion of the material surface;
- (2)
- The hybrid process demonstrates higher polishing efficiency and superior surface quality than individual laser and electrochemical polishing methods. Furthermore, to some extent, the surface hardness of stainless steel is enhanced through the hybrid process, leading to the lowest coefficient of friction and specific wear rate in friction and wear tests. This process also results in reduced surface abrasion and superior wear resistance;
- (3)
- The best laser-electrochemical hybrid polishing results were obtained when the laser power was 16 W, the scanning speed was 100 mm/s, and the current was 5 A. Compared with the original samples, the roughness was reduced by 83.4%, the microhardness was increased by 4%, and the specific wear rate was reduced by 70%;
- (4)
- The laser-electrochemical hybrid process exhibits promising potential for applications in the efficient and high-quality surface polishing of additive-manufactured metal components.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Chen, L.; He, Y.; Yang, Y.X.; Niu, S.; Ren, H. The research status and development trend of additive manufacturing technology. Int. J. Adv. Manuf. Technol. 2017, 89, 3651–3660. [Google Scholar] [CrossRef]
- Khorasani, M.; Gibson, I.; Ghasemi, A.H.; Hadavi, E.; Rolfe, B. Laser subtractive and laser powder bed fusion of metals: Review of process and production features. Rapid Prototyp. J. 2023, 29, 935–958. [Google Scholar] [CrossRef]
- Sames, W.J.; List, F.A.; Pannala, S.; Dehoff, R.R.; Babu, S.S. The metallurgy and processing science of metal additive manufacturing. Int. Mater. Rev. 2016, 61, 315–360. [Google Scholar] [CrossRef]
- Benedetti, M.; Fontanari, V.; Bandini, M.; Zanini, F.; Carmignato, S. Low- and high-cycle fatigue resistance of Ti-6Al-4V ELI additively manufactured via selective laser melting: Mean stress and defect sensitivity. Int. J. Fatigue 2018, 107, 96–109. [Google Scholar] [CrossRef]
- Han, C.; Li, Y.; Wang, Q.; Wen, S.; Wei, Q.; Yan, C.; Hao, L.; Liu, J.; Shi, Y. Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J. Mech. Behav. Biomed. Mater. 2018, 80, 119–127. [Google Scholar] [CrossRef]
- Manam, N.S.; Harun, W.S.W.; Shri, D.N.A.; Ghani, S.A.C.; Kurniawan, T.; Ismail, M.H.; Ibrahim, M.H.I. Study of corrosion in biocompatible metals for implants: A review. J. Alloys Compd. 2017, 701, 698–715. [Google Scholar] [CrossRef]
- García, C.; Martín, F.; De Tiedra, P.; Cambronero, L.G. Pitting corrosion behaviour of PM austenitic stainless steels sintered in nitrogen-hydrogen atmosphere. Corros. Sci. 2007, 49, 1718–1736. [Google Scholar] [CrossRef]
- Loto, R.T. Data on the Corrosion Resistance and Polarization Behaviour of Lean Austenitic and Ferritic Stainless Steels in Neutral Chloride Media. Orient. J. Chem. 2019, 35, 1138–1142. [Google Scholar] [CrossRef]
- Kurgan, N.; Varol, R. Mechanical properties of P/M 316L stainless steel materials. Powder Technol. 2010, 201, 242–247. [Google Scholar] [CrossRef]
- Kong, D.; Ni, X.; Dong, C.; Lei, X.; Zhang, L.; Man, C.; Yao, J.; Cheng, X.; Li, X. Bio-functional and anti-corrosive 3D printing 316L stainless steel fabricated by selective laser melting. Mater. Des. 2018, 152, 88–101. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Nie, M.; Chen, Y.; Yang, S.; Gao, N. Microstructure and corrosion performance of 316L stainless steel fabricated by Selective Laser Melting and processed through high-pressure torsion. J. Alloys Compd. 2018, 763, 360–375. [Google Scholar] [CrossRef]
- Chen, Q.; Jing, Y.; Yin, J.; Li, Z.; Xiong, W.; Gong, P.; Zhang, L.; Li, S.; Pan, R.; Zhao, X.; et al. High Reflectivity and Thermal Conductivity Ag-Cu Multi-Material Structures Fabricated via Laser Powder Bed Fusion: Formation Mechanisms, Interfacial Characteristics, and Molten Pool Behavior. Micromachines 2023, 14, 362. [Google Scholar] [CrossRef] [PubMed]
- Afazov, S.; Serjouei, A.; Hickman, G.J.; Mahal, R.; Goy, D.; Mitchell, I. Defect-based fatigue model for additive manufacturing. Prog. Addit. Manuf. 2022, 8, 1059–1066. [Google Scholar] [CrossRef]
- Mostafaei, A.; Zhao, C.; He, Y.; Ghiaasiaan, S.R.; Shi, B.; Shao, S.; Shamsaei, N.; Wu, Z.; Kouraytem, N.; Sun, T.; et al. Defects and anomalies in powder bed fusion metal additive manufacturing. Curr. Opin. Solid State Mater. Sci. 2022, 26, 100974. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Yin, J.; Li, Y.; Nie, Z.; Li, X.; You, D.; Guan, K.; Duan, W.; Cao, L.; et al. A Review of Spatter in Laser Powder Bed Fusion Additive Manufacturing: In Situ Detection, Generation, Effects, and Countermeasures. Micromachines 2022, 13, 1366. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Zhang, W.; Ke, L.; Wei, H.; Wang, D.; Yang, L.; Zhu, H.; Dong, P.; Wang, G.; Zeng, X. Vaporization of alloying elements and explosion behavior during laser powder bed fusion of Cu-10Zn alloy. Int. J. Mach. Tools Manuf. 2021, 161, 103686. [Google Scholar] [CrossRef]
- Giovanardi, R.; Conte, M.; Gelsomini, C.; Franci, R. Corrosion resistance of AISI316L stainless steel components obtained by SLM technology. Metall. Ital. 2020, 112, 24–29. [Google Scholar]
- Sharma, R.; Kumar, S.; Saha, R. Enhancing surface quality of SLM produced AlSi10Mg components through chemical polishing. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 1955–1960. [Google Scholar] [CrossRef]
- Vaithilingam, J.; Prina, E.; Goodridge, R.D.; Hague, R.J.; Edmondson, S.; Rose, F.R.; Christie, S.D. Surface chemistry of Ti6Al4V components fabricated using selective laser melting for biomedical applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 67, 294–303. [Google Scholar] [CrossRef]
- Marimuthu, S.; Triantaphyllou, A.; Antar, M.; Wimpenny, D.; Morton, H.; Beard, M. Laser polishing of selective laser melted components. Int. J. Mach. Tools Manuf. 2015, 95, 97–104. [Google Scholar] [CrossRef]
- Yasa, E.; Kruth, J.P. Microstructural investigation of Selective Laser Melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng. 2011, 19, 389–395. [Google Scholar] [CrossRef]
- Obeidi, M.A.; McCarthy, E.; O’Connell, B.; Ul Ahad, I.; Brabazon, D. Laser Polishing of Additive Manufactured 316L Stainless Steel Synthesized by Selective Laser Melting. Materials 2019, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Richter, B.; Zhang, X.Z.; Ren, X.; Pfefferkorn, F.E. Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit. Manuf. 2020, 32, 101013. [Google Scholar] [CrossRef]
- Liu, J.; Ma, H.; Meng, L.J.; Yang, H.; Yang, C.; Ruan, S.; Ouyang, D.; Mei, S.; Deng, L.; Chen, J.; et al. Laser Powder Bed Fusion of 316L Stainless Steel: Effect of Laser Polishing on the Surface Morphology and Corrosion Behavior. Micromachines 2023, 14, 850. [Google Scholar] [CrossRef] [PubMed]
- Bhaduri, D.; Penchev, P.; Batal, A.; Dimov, S.; Soo, S.L.; Sten, S.; Harrysson, U.; Zhang, Z.; Dong, H. Laser polishing of 3D printed mesoscale components. Appl. Surf. Sci. 2017, 405, 29–46. [Google Scholar] [CrossRef]
- Zhang, B.C.; Lee, X.; Bai, J.M.; Guo, J.; Wang, P.; Sun, C.-N.; Nai, M.; Qi, G.; Wei, J. Study of selective laser melting (SLM) Inconel 718 part surface improvement by electrochemical polishing. Mater. Des. 2017, 116, 531–537. [Google Scholar] [CrossRef]
- Chang, S.; Liu, A.H.; Ong, C.Y.A.; Zhang, L.; Huang, X.; Tan, Y.H.; Zhao, L.; Li, L.; Ding, J. Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing. Mater. Res. Lett. 2019, 7, 282–289. [Google Scholar] [CrossRef]
- Habibzadeh, S.; Li, L.; Shum-Tim, D.; Davis, E.C.; Omanovic, S. Electrochemical polishing as a 316L stainless steel surface treatment method: Towards the improvement of biocompatibility. Corros. Sci. 2014, 87, 89–100. [Google Scholar] [CrossRef]
- Long, Y.H.; Shi, T.L.; Xiong, L.C. Excimer laser electrochemical etching n-Si in the KOH solution. Opt. Lasers Eng. 2010, 48, 570–574. [Google Scholar] [CrossRef]
- Yuan, L.X.; Xu, J.W.; Zhao, J.S.; Zhang, H. Research on Hybrid Process of Laser Drilling With Jet Electrochemical Machining. J. Manuf. Sci. Eng.-Trans. Asme 2012, 134, 064502. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhang, W.W. Theoretical and experimental study on hybrid laser and shaped tube electrochemical machining (Laser-STEM) process. Int. J. Adv. Manuf. Technol. 2021, 112, 1601–1615. [Google Scholar] [CrossRef]
- Lescuras, V.; Andre, J.C.; Lapicque, F.; Zouari, I. Jet electrochemical etching of nickel in a sodium chloride medium assisted by a pulsed laser beam. J. Appl. Electrochem. 1995, 25, 933–939. [Google Scholar] [CrossRef]
- De Silva, A.K.M.; Pajak, P.T.; Harrison, D.K.; McGeough, J.A. Modelling and experimental investigation of laser assisted jet electrochemical machining. Cirp Ann.-Manuf. Technol. 2004, 53, 179–182. [Google Scholar] [CrossRef]
- De Silva, A.K.M.; Pajak, P.T.; Mcgeough, J.A.; Harrison, D.K. Thermal effects in laser assisted jet electrochemical machining. Cirp Ann.-Manuf. Technol. 2011, 60, 243–246. [Google Scholar] [CrossRef]
- Guo, G.W.; Tang, G.Z.; Ma, X.X.; Sun, M.; Ozur, G.E. Effect of high current pulsed electron beam irradiation on wear and corrosion resistance of Ti6Al4V. Surf. Coat. Technol. 2013, 229, 140–145. [Google Scholar] [CrossRef]
Element | Ni | Cr | Mo | C | Mn | Si | Fe |
---|---|---|---|---|---|---|---|
Percent (wt%) | 10.72 | 16.96 | 2.44 | 0.01 | 0.73 | 0.51 | Bal. |
Samples | P/W | V/(mm/s) | f/kHz | n | I/A | Time/min |
---|---|---|---|---|---|---|
LP | 16 | 100 | 40 | 2 | - | - |
EP | - | - | - | - | 5 | 3 |
LEP | 16 | 100 | 40 | 2 | 5 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Li, C.; Yang, H.; Liu, J.; Wang, J.; Deng, L.; Fang, L.; Yang, C. Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel. Micromachines 2024, 15, 374. https://doi.org/10.3390/mi15030374
Liu J, Li C, Yang H, Liu J, Wang J, Deng L, Fang L, Yang C. Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel. Micromachines. 2024; 15(3):374. https://doi.org/10.3390/mi15030374
Chicago/Turabian StyleLiu, Jun, Chunbo Li, Huan Yang, Jiani Liu, Jiayan Wang, Leimin Deng, Licun Fang, and Can Yang. 2024. "Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel" Micromachines 15, no. 3: 374. https://doi.org/10.3390/mi15030374
APA StyleLiu, J., Li, C., Yang, H., Liu, J., Wang, J., Deng, L., Fang, L., & Yang, C. (2024). Study on Laser-Electrochemical Hybrid Polishing of Selective Laser Melted 316L Stainless Steel. Micromachines, 15(3), 374. https://doi.org/10.3390/mi15030374