Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of WO3 NW Thin Film
2.3. Characterization Techniques
2.4. Sensing Performance
3. Results
3.1. Morphological Properties of WO3 NW Thin Film
3.2. Optical Characterizations of WO3 NW Thin Film
3.3. Crystalline and Structural Studies of WO3 NW Thin Film
3.4. XPS Studies of WO3 NW Thin Films
3.5. Sensing Parameters of WO3 NW Thin-Film-Based Electrodes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Theerthagiri, J.; Chandrasekaran, S.; Salla, S.; Elakkiya, V.; Senthil, R.A.; Nithyadharseni, P.; Maiyalagan, T.; Micheal, K.; Ayeshamariam, A.; Arasu, M.V.; et al. Recent Developments of Metal Oxide Based Heterostructures for Photocatalytic Applications towards Environmental Remediation. J. Solid State Chem. 2018, 267, 35–52. [Google Scholar] [CrossRef]
- Kanazawa, E.; Sakai, G.; Shimanoe, K.; Kanmura, Y.; Teraoka, Y.; Miura, N.; Yamazoe, N. Metal Oxide Semiconductor N2O Sensor for Medical Use. Sens. Actuators B Chem. 2001, 77, 72–77. [Google Scholar] [CrossRef]
- Li, F.; Ran, J.; Jaroniec, M.; Qiao, S.Z. Solution Combustion Synthesis of Metal Oxide Nanomaterials for Energy Storage and Conversion. Nanoscale 2015, 7, 17590–17610. [Google Scholar] [CrossRef] [PubMed]
- Bashambu, L.; Singh, R.; Verma, J. Metal/Metal Oxide Nanocomposite Membranes for Water Purification. Mater. Today Proc. 2021, 44, 538–545. [Google Scholar] [CrossRef]
- Jolly, A.; Kim, H.; Moon, J.-Y.; Mohan, A.; Lee, Y.-C. Exploring the Imminent Trends of Saponins in Personal Care Product Development: A Review. Ind. Crops Prod. 2023, 205, 117489. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Liu, S.-B.; Meng, F.-L.; Liu, J.-Y.; Jin, Z.; Kong, L.-T.; Liu, J.-H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [PubMed]
- Subramani, T.; Thimmarayan, G.; Balraj, B.; Chandrasekar, N.; Palanisamy, M.; Nagarajan, S.K.; Amirtharajan, S.; Kumar, M.; Sivakumar, C. Surfactants Assisted Synthesis of WO3 Nanoparticles with Improved Photocatalytic and Antibacterial Activity: A Strong Impact of Morphology. Inorg. Chem. Commun. 2022, 142, 109709. [Google Scholar] [CrossRef]
- Diez-Cabanes, V.; Segalina, A.; Pastore, M. Effects of Size and Morphology on the Excited-State Properties of Nanoscale WO3 Materials from First-Principles Calculations: Implications for Optoelectronic Devices. ACS Appl. Nano Mater. 2022, 5, 16289–16297. [Google Scholar] [CrossRef]
- Lima, L.V.C.; Rodriguez, M.; Freitas, V.A.A.; Souza, T.E.; Machado, A.E.H.; Patrocínio, A.O.T.; Fabris, J.D.; Oliveira, L.C.A.; Pereira, M.C. Synergism between n-type WO3 and p-type δ-FeOOH semiconductors: High interfacial contacts and enhanced photocatalysis. Appl. Catal. B Environ. 2015, 165, 579–588. [Google Scholar] [CrossRef]
- Azam, A.; Kim, J.; Park, J.; Novak, T.G.; Tiwari, A.P.; Song, S.H.; Kim, B.; Jeon, S. Two-Dimensional WO3 Nanosheets Chemically Converted from Layered WS2 for High-Performance Electrochromic Devices. Nano Lett. 2018, 18, 5646–5651. [Google Scholar] [CrossRef]
- Jadkar, V.; Pawbake, A.; Waykar, R.; Jadhavar, A.; Date, A.; Late, D.; Pathan, H.; Gosavi, S.; Jadkar, S. Synthesis of g-WO3 thin films by hot wire-CVD and investigation of its humidity sensing properties. Phys. Status Solidi A 2017, 214, 1600717. [Google Scholar] [CrossRef]
- Godbole, R.; Godbole, V.; Bhagwat, S. Palladium enriched tungsten oxide thin films: An efficient gas sensor for hazardous gases. Eur. Phys. J. B 2019, 92, 78. [Google Scholar] [CrossRef]
- Zhu, L.; Zheng, W. Room-temperature gas sensing of ZnO-based gas sensor: A review. Sens. Actuators A Phys. 2017, 267, 242–261. [Google Scholar] [CrossRef]
- Zou, Y.S.; Zhang, Y.C.; Lou, D.; Wang, H.P.; Gu, L.; Dong, Y.H.; Dou, K.; Song, X.F.; Zeng, H.B. Structural and optical properties of WO3 films deposited by pulsed laser deposition. J. Alloys Compd. 2014, 583, 465–470. [Google Scholar] [CrossRef]
- Heidari, E.K.; Zamani, C.; Marzbanrad, E.; Raissi, B.; Nazarpour, S. WO3-based NO2 sensors fabricated through low frequency AC electrophoretic deposition. Sens. Actuators B Chem. 2010, 146, 165–170. [Google Scholar] [CrossRef]
- Kim, T.S.; Kim, Y.B.; Yoo, K.S.; Sung, G.S.; Jung, H.J. Sensing characteristics of dc reactive sputtered WO3 thin films as an NOx gas sensor. Sens. Actuators B Chem. 2000, 62, 102–108. [Google Scholar] [CrossRef]
- Arutanti, O.; Ogi, T.; Nandiyanto, A.B.D.; Iskandar, F.; Okuyama, K. Controllable crystallite and particle sizes of WO3 particles prepared by a spray-pyrolysis method and their photocatalytic activity. Inorg. Mater. Synth. Process. 2014, 60, 41–49. [Google Scholar] [CrossRef]
- Li, Y.; McMaster, W.A.; Wei, H.; Chen, D.; Caruso, R.A. Enhanced Electrochromic Properties of WO3 Nanotree-like Structures Synthesized via a Two-Step Solvothermal Process Showing Promise for Electrochromic Window Application. ACS Appl. Nano Mater. 2018, 1, 2552–2558. [Google Scholar] [CrossRef]
- Su, X.; Xiao, F.; Li, Y.; Jian, J.; Sun, Q.; Wang, J. Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Mater. Lett. 2010, 64, 1232–1234. [Google Scholar] [CrossRef]
- Salmaoui, S.; Sediri, F.; Gharbi, N. Characterization of h-WO3 nanorods synthesized by hydrothermal process. Polyhedron 2010, 29, 1771–1775. [Google Scholar] [CrossRef]
- Djaoued, Y.; Priya, S.; Balaji, S. Low temperature synthesis of nanocrystalline WO3 films by sol–gel process. J. Non-Cryst. Solids 2008, 354, 673–679. [Google Scholar]
- Kafizas, A.; Francàs, L.; Sotelo-Vazquez, C.; Ling, M.; Li, Y.; Glover, E.; McCafferty, L.; Blackman, C.; Darr, J.; Parkin, I. Optimizing the Activity of Nanoneedle Structured WO3 Photoanodes for Solar Water Splitting: Direct Synthesis via Chemical Vapor Deposition. J. Phys. Chem. C 2017, 121, 5983–5993. [Google Scholar] [CrossRef]
- Keshri, S.; Kumar, A.; Kabiraj, D. Effect of Annealing on Structural, Optical and Electrical Behaviors of WO3 Thin Films Prepared by Physical Vapor Deposition Method. J. Nano-Electron. Phys. 2011, 3, 260–267. [Google Scholar]
- Buch, V.R.; Chawla, A.K.; Rawal, S.K. Review on electrochromic property for WO3 thin films using different deposition techniques. Mater. Today Proc. 2016, 3, 1429–1437. [Google Scholar] [CrossRef]
- Godbole, R.; Ameen, S.; Nakate, U.T.; Akhtar, M.S.; Shin, H.-S. Low temperature HFCVD synthesis of tungsten oxide thin film for high response hydrogen gas sensor application. Mater. Lett. 2019, 19, 398–401. [Google Scholar] [CrossRef]
- Zhai, Z.; Shen, H.; Chen, J.; Li, X.; Jiang, Y. Evolution of Structural and Electrical Properties of Carbon Films from Amorphous Carbon to Nanocrystalline Graphene on Quartz Glass by HFCVD. ACS Appl. Mater. Interfaces 2018, 10, 17427–17436. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zou, Y. The Effect of Deposition Parameters on the Growth Rate of Microcrystalline Diamond Powders Synthesized by HFCVD Method. Coating 2017, 7, 95. [Google Scholar] [CrossRef]
- Tan, G.L.; Tang, D.; Dastan, D.; Jafari, A.; Silva, J.P.B.; Yin, X.T. Effect of heat treatment on electrical and surface properties of tungsten oxide thin films grown by HFCVD technique. Mater. Sci. Semicon. Process. 2021, 122, 105506. [Google Scholar] [CrossRef]
- Jacob, S.P.C. The influence of substrate temperature variation on tungsten oxide thin film growth in an HFCVD system. Appl. Surf. Sci. 2007, 253, 3317–3325. [Google Scholar]
- Jafari, A.; Ghoranneviss, M.; Elahi, A.S. HFCVD application for growth of monoclinic tungsten trioxide crystal nano-walls. J. Inorg. Organomet. Polym. Mater. 2016, 26, 254–258. [Google Scholar] [CrossRef]
- White, C.M.; Gillaspie, D.T.; Whitney, E.; Lee, S.-H.; Dillon, A.C. Flexible electrochromic devices based on crystalline WO3 nanostructures produced with hot-wire chemical vapor deposition. Thin Solid Films 2009, 517, 3596–3599. [Google Scholar] [CrossRef]
- Shankar, N.; Yu, M.-F.; Vanka, S.P.; Glumac, N.G. Synthesis of tungsten oxide (WO3) nanorods using carbon nanotubes as templates by hot filament chemical vapor deposition. Mater. Lett. 2006, 60, 771–774. [Google Scholar] [CrossRef]
- Imran, M.; Kim, E.-B.; Kwak, D.-H.; Akhtar, M.S.; Ameen, S. Controlled Growth of WO3 Pyramidal Thin Film via Hot-Filament Chemical Vapor Deposition: Electrochemical Detection of Ethylenediamine. Chemosensors 2021, 9, 257. [Google Scholar] [CrossRef]
- Lu, D.; Ogino, A.; Liang, B.; Liu, J.; Nagatsu, M. Field-Emission Properties of Nanostructured WO3 Arrays Fabricated Using Tungsten Hot-Filament Chemical Vapor Deposition. Jpn. J. Appl. Phys. 2009, 48, 090206. [Google Scholar] [CrossRef]
- Sahu, C.; Sircar, A.; Sangwai, J.S.; Kumar, R. Effect of Methylamine, Amylamine, and Decylamine on the Formation and Dissociation Kinetics of CO2 Hydrate Relevant for Carbon Dioxide Sequestration. Ind. Eng. Chem. Res. 2022, 61, 2672–2684. [Google Scholar] [CrossRef]
- Vinogradoff, V.; Duvernay, F.; Danger, G.; Theulé, P.; Borget, F.; Chiavassa, T. Formaldehyde and methylamine reactivity in interstellar ice analogues as a source of molecular complexity at low temperature. Astron. Astrophys. 2013, 549, A40. [Google Scholar] [CrossRef]
- Noorhashimah, M.N.; Razak, K.A.; Lockman, Z. Effect of Concentration and pH of PBS to the Electrocatalytic Performance of Enzymatic Glucose Biosensor. Solid State Phenom. 2019, 290, 195–198. [Google Scholar] [CrossRef]
- Murugappan, K.; Kang, C.; Silvester, D.S. Electrochemical Oxidation and Sensing of Methylamine Gas in Room Temperature Ionic Liquids. J. Phys. Chem. C 2014, 118, 19232–19237. [Google Scholar] [CrossRef]
- Dai, X.; Rabeah, J.; Yuan, H.; Brückner, A.; Cui, X.; Shi, F. Glycerol as a Building Block for Prochiral Aminoketone, N-Formamide, and N-Methyl Amine Synthesis. ChemSusChem 2016, 9, 3133–3138. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X.; Lu, H.; Yan, B. Dual-emission ratiometric fluorescent probe-based lanthanide-functionalized hydrogen-bonded organic framework for the visual detection of methylamine. J. Mater. Chem. C 2022, 10, 1212–1219. [Google Scholar] [CrossRef]
- Huang, G.; Zhou, Y.; Li, F.; Tan, X.; Cai, Z.; Luo, D.; Chen, T.; Zhang, M. An effective and reliable fluorescent sensor for selective detection of methylamine gas based on in-situ formation of MAPbBr3 perovskite nanocrystals in electrospun fibers. Sens. Actuators B Chem. 2021, 347, 130618. [Google Scholar] [CrossRef]
- Kim, T.-H.; Yoon, J.-W.; Kang, Y.C.; Abdel-Hady, F.; Wazzan, A.A.; Lee, J.-H. A strategy for ultrasensitive and selective detection of methylamine using p-type Cr2O3: Morphological design of sensing materials, control of charge carrier concentrations, and configurational tuning of Au catalysts. Sens. Actuators B Chem. 2017, 240, 1049–1057. [Google Scholar] [CrossRef]
- Rajagopal, S.; Nataraj, D.; Mangalaraj, D.; Djaoued, Y.; Robichaud, J.; Khyzhun, O.Y. Controlled Growth of WO3 Nanostructures with Three Different Morphologies and Their Structural, Optical, and Photodecomposition Studies. Nanoscale Res. Lett. 2009, 4, 1335–1342. [Google Scholar] [CrossRef] [PubMed]
- Phuruangrat, A.; Ham, D.J.; Hong, S.J.; Thongtem, S.; Lee, J.S. Synthesis of hexagonal WO3 nanowires by microwave-assisted hydrothermal method and their electrocatalytic activities for hydrogen evolution reaction. J. Mater. Chem. 2010, 20, 1780–1786. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 2018, 45, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Hersh, H.N.; Kramer, W.E.; McGee, J.H. Mechanism of electrochromism in WO3. Appl. Phys. Lett. 1975, 27, 646–648. [Google Scholar] [CrossRef]
- González-Borrero, P.P.; Sato, F.; Medina, A.N.; Baesso, M.L.; Bento, A.C.; Baldissera, G.; Persson, C.; Niklasson, G.A.; Granqvist, C.G.; Ferreira da Silva, A. Optical band-gap determination of nanostructured WO3 film. Appl. Phys. Lett. 2010, 96, 061909. [Google Scholar] [CrossRef]
- Vemuri, R.S.; Engelhard, M.H.; Ramana, C.V. Correlation between Surface Chemistry, Density, and Band Gap in Nanocrystalline WO3 Thin Films. ACS Appl. Mater. Interfaces 2012, 4, 1371–1377. [Google Scholar] [CrossRef]
- Colton, R.J.; Guzman, A.M.; Rabalais, J.W. Electrochromism in some thin-film transition-metal oxides characterized by X-ray electron spectroscopy. J. Appl. Phys. 1978, 49, 409–416. [Google Scholar] [CrossRef]
- Daniel, M.F.; Desbat, B.; Lassegues, J.C.; Gerand, B.; Figlarz, M. Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide hydrates. J. Solid State Chem. 1987, 67, 235–247. [Google Scholar] [CrossRef]
- Lee, S.H.; Cheong, H.M.; Liu, P.; Smith, D.; Tracy, C.E.; Mascarenhas, A.; Pitts, J.R.; Deb, S.K. Raman spectroscopic studies of gasochromic a-WO3 thin films. Electrochim. Acta 2011, 46, 1995–1999. [Google Scholar] [CrossRef]
- Boulova, M.; Lucazeau, G. Crystallite Nanosize Effect on the Structural Transitions of WO3 Studied by Raman Spectroscopy. J. Solid State Chem. 2002, 167, 425–434. [Google Scholar] [CrossRef]
- Cazzanelli, E.; Vinegoni, C.; Mariotto, G.; Kuzmin, A.; Purans, J. Raman study of the phase transitions sequence in pure WO3 at high temperature and in HxWO3 with variable hydrogen content. Solid State Ionics 1999, 123, 67–74. [Google Scholar] [CrossRef]
- Kanan, S.M.; Tripp, C.P. Synthesis, FTIR studies and sensor properties of WO3 powders. Curr. Opin. Solid State Mater. Sci. 2007, 11, 19–27. [Google Scholar] [CrossRef]
- Deepa, M.; Sharma, N.; Varshney, P.; Varma, S.P.; Agnihotry, S.A. FTIR investigations of solid precursor materials for sol-gel deposition of WO3 based electrochromic films. J. Mater. Sci. 2000, 35, 5313–5318. [Google Scholar] [CrossRef]
- Charton, P.; Gengembre, L.; Armand, P. TeO2-WO3 Glasses: Infrared, XPS and XANES Structural Characterizations. J. Solid State Chem. 2002, 168, 175–183. [Google Scholar] [CrossRef]
- Shpak, A.P.; Korduban, A.M.; Medvedskij, M.M.; Kandyba, V.O. XPS studies of active elements surface of gas sensors based on WO3−x nanoparticles. J. Electron Spectrosc. Relat. Phenom. 2007, 156–158, 172–175. [Google Scholar]
- Lozzi, L.; Ottaviano, L.; Passacantando, M.; Santucci, S.; Cantalini, C. The influence of air and vacuum thermal treatments on the NO2 gas sensitivity of WO3 thin films prepared by thermal evaporation. Thin Solid Films 2001, 391, 224–228. [Google Scholar] [CrossRef]
- Leftheriotis, G.; Papaefthimiou, S.; Yianoulis, P.; Siokou, A. Effect of the tungsten oxidation states in the thermal coloration and bleaching of amorphous WO3 films. Thin Solid Films 2001, 384, 298–306. [Google Scholar] [CrossRef]
- Soto, G.; De La Cruz, W.; Díaz, J.A.; Machorro, R.; Castillón, F.F.; Farías, M.H. Characterization of tungsten oxide films produced by reactive pulsed laser deposition. Appl. Surf. Sci. 2003, 218, 281–289. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, H.; Wang, Y.; Li, J.; Yang, Y.; Cheng, X.; Luo, Y.; An, B.; Pan, X.; Xie, E. Ex-situ XPS analysis of yolk-shell Sb2O3/WO3 for ultra-fast acetone resistive sensor. J. Hazard Mater. 2021, 412, 125175. [Google Scholar] [CrossRef]
- Joshi, N.; da Silva, L.F.; Jadhav, H.S.; Shimizu, F.M.; Suman, P.H.; M’Peko, J.C.; Orlandie, M.O.; Seo, J.G.; Mastelaro, V.R.; Oliveira, O.N., Jr. Yolk-shelled ZnCo2O4 microspheres: Surface properties and gas sensing application. Sens. Actuators B Chem. 2018, 257, 906–915. [Google Scholar] [CrossRef]
- Kim, E.-B.; Imran, M.; Shaheer Akhtar, M.; Shin, H.-S.; Ameen, S. Enticing 3D peony-like ZnGa2O4 microstructures for electrochemical detection of N, N-dimethylmethanamide chemical. J. Hazard. Mater. 2021, 404, 124069. [Google Scholar] [CrossRef]
- Imran, M.; Kim, E.-B.; Kwak, D.-H.; Ameen, S. Porous MgNiO2 Chrysanthemum Flower Nanostructure Electrode for Toxic Hg2+ Ion Monitoring in Aquatic Media. Sensors 2023, 23, 7910. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Fan, Y.; Shi, Y.; Xiang, Q.; Wang, X.; Xu, J. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism. Sens. Actuators B Chem. 2019, 294, 106–115. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Dar, G.N.; Zaidi, S.A.; Umar, A.; Abaker, M.; Bouzid, H.; Baskoutas, S. Growth and properties of Ag-doped ZnO nanoflowers for highly sensitive phenyl hydrazine chemical sensor application. Talanta 2012, 93, 257–263. [Google Scholar] [CrossRef]
- Murugappan, K.; Silvester, D.S. Sensors for Highly Toxic Gases: Methylamine and Hydrogen Chloride Detection at Low Concentrations in an Ionic Liquid on Pt Screen Printed Electrodes. Sensors 2015, 15, 26866–26876. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Khan, S.B.; Jamal, A.; Faisal, M.; Asiri, A.M. Fabrication of highly sensitive acetone sensor based on sonochemically prepared as-grown Ag2O nanostructures. Chem. Eng. J. 2012, 192, 122–128. [Google Scholar] [CrossRef]
- Hussain, M.M.; Rahman, M.M.; Asiri, A.M. Efficient 2-Nitrophenol Chemical Sensor Development Based on Ce2O3 Nanoparticles Decorated CNT Nanocomposites for Environmental Safety. PLoS ONE 2016, 11, e0166265. [Google Scholar] [CrossRef] [PubMed]
- Godbole, R.; Imran, M.; Kim, E.-B.; Park, J.B.; Ameen, S. Novel approach to synthesize morphology variant tungsten oxide thin films for efficient chemical sensing. Ceram. Int. 2022, 48, 12506–12514. [Google Scholar] [CrossRef]
- Rahman, M.; Khan, S.B.; Faisal, M.; Asiri, A.M.; Alamry, K.A. Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sens. Actuators B Chem. 2012, 171, 932–937. [Google Scholar] [CrossRef]
- Kim, E.B.; Ameen, S.; Akhtar, M.S.; Shin, H.S. Iron-nickel co-doped ZnO nanoparticles as scaffold for field effect transistor sensor: Application in electrochemical detection of hexahydropyridine chemical. Sens. Actuators B Chem. 2018, 275, 422–431. [Google Scholar] [CrossRef]
- Ameen, S.; Akhtar, M.S.; Shin, H.S. Hydrazine chemical sensing by a modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sens. Actuators B Chem. 2012, 173, 177–183. [Google Scholar] [CrossRef]
Materials | Preparation Method | Chemicals | Sensitivity | LOD | R2 | Refs. |
---|---|---|---|---|---|---|
WO3 | HFCVD | ethylenediamine | 161.33 μA μM−1 cm−2 | 9.56 μM | 0.98 | [33] |
PANI/Gr | Spin coating | hydrazine | 32.54 × 10−5 μA cm−2 mM−1 | 15.38 mM | 0.78578 | [38] |
Ag2O | Sonochemical method | acetone | 1.689 μA cm−2 mM−1 | 0.11 μM | 0.946 | [67] |
Ce2O3 | Wet chemical method | 2-nitrophenol | 1.689 μA mM−1 cm−2 | 0.9030 | [68] | |
WO3 | HFCVD | diethylamine | 3.5 μA μM−1 cm−2 | 7 μM | [69] | |
ZnFe2O4 | Hydrothermal method | formaldehyde | 4.10 μA cm−2 mM−1 | 0.89 μM | [70] | |
MAPbBr3 | Electrospun | methylamine | - | 0.8 ppm | 0.9904 | [71] |
WO3 | HFCVD | methylamine | 183.65 μA μM−1 cm−2 | 20 μM | 0.97708 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Imran, M.; Kim, E.-B.; Kim, T.-G.; Ameen, S.; Akhtar, M.S.; Kwak, D.-H. Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine. Micromachines 2024, 15, 441. https://doi.org/10.3390/mi15040441
Imran M, Kim E-B, Kim T-G, Ameen S, Akhtar MS, Kwak D-H. Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine. Micromachines. 2024; 15(4):441. https://doi.org/10.3390/mi15040441
Chicago/Turabian StyleImran, Mohammad, Eun-Bi Kim, Tae-Geum Kim, Sadia Ameen, Mohammad Shaheer Akhtar, and Dong-Heui Kwak. 2024. "Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine" Micromachines 15, no. 4: 441. https://doi.org/10.3390/mi15040441
APA StyleImran, M., Kim, E. -B., Kim, T. -G., Ameen, S., Akhtar, M. S., & Kwak, D. -H. (2024). Fabrication of Tungsten Oxide Nanowalls through HFCVD for Improved Electrochemical Detection of Methylamine. Micromachines, 15(4), 441. https://doi.org/10.3390/mi15040441