Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET
Abstract
:1. Introduction
2. Working Principle and Machine Learn Based Analytical Model
2.1. Charge-Coupling Effect of SIPOS Modulated Drift Region
2.2. Electric Field of SIPOS Modulated Drift Region
2.3. Figure of Merit BV-RON,sp Model for SSJ-UMOS
2.4. Hyperparameters Optimization Based on Gaussian Process Regression Model
3. Results and Discussion
3.1. Off-State Characteristics
3.2. Gaussian Process Regression
3.3. ON State and Dynamic CHARACTERISTIC
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Udrea, F.; Deboy, G.; Fujihira, T. Superjunction power devices, history, development, and future prospects. IEEE Trans. Electron Devices 2017, 64, 713–727. [Google Scholar] [CrossRef]
- Wu, L.; Chen, X.; Zeng, J. Novel accumulation mode superjunction device with extended superjunction gate. IEEE Trans. Electron Devices 2022, 69, 2560–2565. [Google Scholar] [CrossRef]
- Duan, B.; Wang, Y.; Sun, L. Accumulation-mode device: New power MOSFET breaking superjunction silicon limit by simulation study. IEEE Trans. Electron Devices 2020, 67, 1085–1089. [Google Scholar] [CrossRef]
- Saito, W. Breakthrough of drain current capability and on-resistance limits by gate-connected superjunction MOSFET. In Proceedings of the 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Chicago, IL, USA, 13–17 May 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 36–39. [Google Scholar]
- Williams, R.K.; Darwish, M.N.; Blanchard, R.A. The trench power MOSFET: Part I—History, technology, and prospects. IEEE Trans. Electron Devices 2017, 64, 674–691. [Google Scholar] [CrossRef]
- Luo, X.; Jiang, Y.H.; Zhou, K. Ultralow specific on-resistance superjunction vertical DMOS with high-K dielectric pillar. IEEE Electron Device Lett. 2012, 33, 1042–1044. [Google Scholar] [CrossRef]
- Guo, Y.; Yao, J.; Zhang, B. Variation of lateral width technique in SoI high-voltage lateral double-diffused metal–oxide–semiconductor transistors using high-k dielectric. IEEE Electron Device Lett. 2015, 36, 262–264. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, Q.; Jiao, L. Analytical study on a 700 V triple RESURF LDMOS with a variable high-K dielectric trench. IEEE Trans. Electron Devices 2021, 68, 2872–2878. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, B.; Shi, T. A superjunction U-MOSFET with SIPOS pillar breaking superjunction silicon limit by TCAD simulation study. IEEE Electron Device Lett. 2017, 38, 794–797. [Google Scholar] [CrossRef]
- Li, X.; Wu, Z.; Rzepa, G.; Karner, M.; Xu, H.; Wu, Z.; Wang, W.; Yang, G.; Luo, Q.; Wang, L.; et al. Overview of Emerging Semiconductor Device Model Methodologies: From Device Physics to Machine Learning Engines. Fundam. Res. 2024. [Google Scholar] [CrossRef]
- Ghoshhajra, R.; Biswas, K.; Sarkar, A. A review on machine learning approaches for predicting the effect of device parameters on performance of nanoscale MOSFETs. In Proceedings of the 2021 Devices for Integrated Circuit (DevIC), Kalyani, India, 19–20 May 2021; pp. 489–493. [Google Scholar]
- Klemme, F.; Prinz, J.; Van Santen, V.M. Modeling emerging technologies using machine learning: Challenges and opportunities. In Proceedings of the 39th International Conference on Computer-Aided Design, Online, 2–5 November 2020; pp. 1–9. [Google Scholar]
- Wang, J.; Kim, Y.H.; Ryu, J. Artificial neural network-based compact modeling methodology for advanced transistors. IEEE Trans. Electron Devices 2021, 68, 1318–1325. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Y.; Liao, X. Machine Learning Regression-Based Single-Event Transient Modeling Method for Circuit-Level Simulation. IEEE Trans. Electron Devices 2021, 68, 5758–5764. [Google Scholar] [CrossRef]
- Zhang, L.; Chan, M. Artificial neural network design for compact modeling of generic transistors. J. Comput. Electron. 2017, 16, 825–832. [Google Scholar] [CrossRef]
- Mehta, K.; Wong, H.Y. Prediction of FinFET current-voltage and capacitance-voltage curves using machine learning with autoencoder. IEEE Electron Device Lett. 2020, 42, 136–139. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, B.; Li, Z. Theory of superjunction with NFD and FD modes based on normalized breakdown voltage. IEEE Trans. Electron Devices 2015, 62, 4114–4120. [Google Scholar] [CrossRef]
- Fujihira, T. Theory of semiconductor superjunction devices. Jpn. J. Appl. Phys. 1997, 36, 6254. [Google Scholar] [CrossRef]
- Baliga, B.J. Advanced Power MOSFET Concepts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Zhou, J.; Huang, C.F.; Cheng, C.H. A comprehensive analytical study of dielectric modulated drift regions—Part I: Static characteristics. IEEE Trans. Electron Devices 2016, 63, 2255–2260. [Google Scholar] [CrossRef]
- Ye, Z.Y.; Liu, L.; Yao, Y. Fabrication of a 650V superjunction MOSFET with built-in MOS-channel diode for fast reverse recovery. IEEE Electron Device Lett. 2019, 40, 1159–1162. [Google Scholar] [CrossRef]
- Saito, W.; Omura, I.; Aida, S. A 15.5 m Ω cm2-680V Superjunction MOSFET Reduced On-Resistance by Lateral Pitch Narrowing. In Proceedings of the 2006 IEEE International Symposium on Power Semiconductor Devices and IC’s, Naples, Italy, 4–8 June 2006; IEEE: Piscataway, NJ, USA, 2006; pp. 1–4. [Google Scholar]
- Kushwaha, P.K.; Nautiyal, P.; Gupta, A. An improved SJ UMOS with modified gate electrode to reduce gate charge. In Proceedings of the 2019 9th Annual Information Technology, Electromechanical Engineering and Microelectronics Conference (IEMECON), Jaipur, India, 13–15 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 81–84. [Google Scholar]
- Shibata, T.; Noda, Y.; Yamauchi, S. 200V trench filling type super junction MOSFET with orthogonal gate structure. In Proceedings of the 19th International Symposium on Power Semiconductor Devices and IC’s, Jeju, Republic of Korea, 27–31 May 2007; IEEE: Piscataway, NJ, USA, 2007; pp. 37–40. [Google Scholar]
- Lin, Z.; Huang, H.; Chen, X. An improved superjunction structure with variation vertical doping profile. IEEE Trans. Electron Devices 2014, 62, 228–231. [Google Scholar] [CrossRef]
Evaluation Metric | Metric Value |
---|---|
MSE | 953.56 |
RMSE | 30.88 |
MAPE | 4.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Z.; Sun, Q.; Ma, C.; Hou, B.; Jiao, L. Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET. Micromachines 2024, 15, 411. https://doi.org/10.3390/mi15030411
Cao Z, Sun Q, Ma C, Hou B, Jiao L. Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET. Micromachines. 2024; 15(3):411. https://doi.org/10.3390/mi15030411
Chicago/Turabian StyleCao, Zhen, Qi Sun, Chuanfeng Ma, Biao Hou, and Licheng Jiao. 2024. "Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET" Micromachines 15, no. 3: 411. https://doi.org/10.3390/mi15030411
APA StyleCao, Z., Sun, Q., Ma, C., Hou, B., & Jiao, L. (2024). Machine Learning-Based Figure of Merit Model of SIPOS Modulated Drift Region for U-MOSFET. Micromachines, 15(3), 411. https://doi.org/10.3390/mi15030411