Fully Additively Manufactured Counter Electrodes for Dye-Sensitized Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodology
2.2. Characterization Methods
3. Results and Discussions
3.1. Microstructure Analysis
3.2. Electrical Characterization
3.3. Fabrication of the DSSCs
3.3.1. Photoanode
3.3.2. Electrolyte
3.3.3. DSSC Assembly
3.4. Performance Evaluation of the DSSCs
4. Conclusions
- Unlike traditional CE manufacturing methods, the proposed AM approach eliminates the need for environmentally hazardous and cost-intensive surface pre-treatment processes. This makes it a facile and green approach for CE manufacturing in DSSC technology.
- The resulting AM-CEs exhibited promising electrical conductivity (8.5 × 104 S/m), surface roughness (Ra 6.32 µm), and electrochemical stability.
- Photo-conversion tests confirmed the enhanced performance of AM-CE, exhibiting a 2.5-fold increase over the conventional FTO\glass-based CE material in DSSCs.
- The proof-of-concept results underscore the potential of the established complete AM approach for sustainable, large-scale, and low-cost production of the AM-CEs, thereby exhibiting the potential for pragmatic deployment of the DSSC technology.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Description |
A | Area |
FF | Fill factor |
J | Current density |
Jmax | Maximum short-circuit current density |
Jsc | Short-circuit current density |
L | Length |
Pin | Incident light power density |
Ra | Average roughness |
R | Resistance |
S | Siemens |
t | Film thickness |
V | Voltage |
Vmax | Maximum open-circuit voltage |
Voc | Open-circuit voltage |
Resistivity | |
Ohm | |
Energy harvesting efficiency | |
Abbreviations | Description |
AM | Additive manufacturing |
AM-CE | Additivelt manfuacted counter electrode |
CE | Counter electrode |
CS | Cold spray |
CV | Cyclic voltammetry |
DSSC | Dye-sensitized solar cell |
EDX | Energy-dispersive X-ray |
EQE | External quantum efficiency |
FTO | Fluorine-doped tin oxide |
ITO | Indium tin oxide |
PCE | Power conversion efficiency |
PET | Polyethylene terephthalate |
Pd | Palladium |
PLA | Polylactic acid |
SEM | Scanning electron microscopy |
Sn | Tin |
UV-Vis | Ultraviolet-visible spectroscopy |
References
- Li, G.; Sheng, L.; Li, T.; Hu, J.; Li, P.; Wang, K. Engineering Flexible Dye-Sensitized Solar Cells for Portable Electronics. Sol. Energy 2019, 177, 80–98. [Google Scholar] [CrossRef]
- Ruba, N.; Prakash, P.; Sowmya, S.; Janarthana, B.; Prabu, A.N.; Chandrasekaran, J.; Alshahrani, T.; Zahran, H.Y.; Yahia, I.S. Recent Advancement in Photo-Anode, Dye and Counter Cathode in Dye-Sensitized Solar Cell: A Review. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1894–1901. [Google Scholar] [CrossRef]
- Sharma, K.; Sharma, V.; Sharma, S.S. Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.; Freitas, J.N.; Nogueira, A.F.; Wang, Y.; Ahmad, S.; Wang, Z.S. Dye-Sensitized Solar Cells Employing Polymers. Prog. Polym. Sci. 2016, 59, 1–40. [Google Scholar] [CrossRef]
- Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2017, 46, 5975–6023. [Google Scholar] [CrossRef] [PubMed]
- Han, B.; Peng, Q.; Li, R.; Rong, Q.; Ding, Y.; Akinoglu, E.M.; Wu, X.; Wang, X.; Lu, X.; Wang, Q.; et al. Optimization of Hierarchical Structure and Nanoscale-Enabled Plasmonic Refraction for Window Electrodes in Photovoltaics. Nat. Commun. 2016, 7, 12825. [Google Scholar] [CrossRef] [PubMed]
- Barichello, J.; Mariani, P.; Vesce, L.; Spadaro, D.; Citro, I.; Matteocci, F.; Bartolotta, A.; Di Carlo, A.; Calogero, G. Bifacial Dye-Sensitized Solar Cells for Indoor and Outdoor Renewable Energy-Based Application. J. Mater. Chem. C Mater. 2023, 12, 2317–2349. [Google Scholar] [CrossRef]
- Baby, R.; Nixon, P.D.; Kumar, N.M.; Subathra, M.S.P.; Ananthi, N. A Comprehensive Review of Dye-Sensitized Solar Cell Optimal Fabrication Conditions, Natural Dye Selection, and Application-Based Future Perspectives. Environ. Sci. Pollut. Res. 2022, 29, 371–404. [Google Scholar] [CrossRef] [PubMed]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Recent Progress in Dye Sensitized Solar Cell Materials and Photo-Supercapacitors: A Review. J. Power Sources 2021, 493, 229698. [Google Scholar] [CrossRef]
- Chen, C.C.; Chen, Y.H.; Nguyen, V.S.; Chen, S.Y.; Tsai, M.C.; Chen, J.S.; Lin, S.Y.; Wei, T.C.; Yeh, C.Y. Double Fence Porphyrins Featuring Indacenodithiophene Group as an Effective Donor for High-Efficiency Dye-Sensitized Solar Cells. Adv. Energy Mater. 2023, 13, 2300353. [Google Scholar] [CrossRef]
- Yang, Z.; Ahmad, W.; Chu, L.; Al-Bahrani, M.R.; Tu, F.; Wang, Y.; Zhang, H.; Wang, X.; Su, J.; Liu, N.; et al. Three-Dimensional Nanocomposite Formed by Hydrophobic Multiwalled Carbon Nanotubes Threading Titanium Dioxide as the Counter Electrode of Enhanced Performance Dye-Sensitized Solar Cells. RSC Adv. 2016, 6, 55071–55078. [Google Scholar] [CrossRef]
- Yang, J.; Yu, X.; Li, Y.; Cheng, G.; Yi, Z.; Zhang, Z.; Chi, F.; Liu, L. A Novel Dye-Sensitized Solar Cell Structure Based on Metal Photoanode without FTO/ITO. Micromachines 2022, 13, 122. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Shehzad, K.; Ur-Rahman, F.; Shah, S.M.; Khurram, M.; Mumtaz, M.; Sagar, R.U.R. Flexible, Low Cost, and Platinum-Free Counter Electrode for Efficient Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2016, 8, 25353–25360. [Google Scholar] [CrossRef] [PubMed]
- Akin, S.; Nath, C.; Jun, M.B.-G. Selective Surface Metallization of 3D-Printed Polymers by Cold-Spray-Assisted Electroless Deposition. ACS Appl. Electron. Mater. 2023, 5, 5164–5175. [Google Scholar] [CrossRef]
- Abdulhameed, O.; Al-Ahmari, A.; Ameen, W.; Mian, S.H. Additive Manufacturing: Challenges, Trends, and Applications. Adv. Mech. Eng. 2019, 11, 1687814018822880. [Google Scholar] [CrossRef]
- Gabor, T.; Akin, S.; Jun, M.B.G. Numerical Studies on Cold Spray Gas Dynamics and Powder Flow in Circular and Rectangular Nozzles. J. Manuf. Process. 2024, 114, 232–246. [Google Scholar] [CrossRef]
- Champagne, V.; Helfritch, D. The Unique Abilities of Cold Spray Deposition. Int. Mater. Rev. 2016, 61, 437–455. [Google Scholar] [CrossRef]
- Milovanovic, S.; Pajnik, J.; Lukic, I. Tailoring of Advanced Poly(Lactic Acid)-Based Materials: A Review. J. Appl. Polym. Sci. 2022, 139, 51839. [Google Scholar] [CrossRef]
- Material Safety Data Sheet-PLA+ Filament. Available online: https://upload.3dprinter.sindoh.com/supplies/1524015361174__PLA_MSDS.pdf (accessed on 22 March 2024).
- Akin, S.; Jo, S.; Jun, M.B.G. A Cold Spray-Based Novel Manufacturing Route for Flexible Electronics. J. Manuf. Process 2023, 86, 98–108. [Google Scholar] [CrossRef]
- Kim, Y.W.; Akin, S.; Yun, H.; Xu, S.; Wu, W.; Byung, M.; Jun, G. Enhanced Performance of Triboelectric Nanogenerators and Sensors via Cold Spray Particle Deposition. ACS Appl. Mater. Interfaces 2022, 14, 46410–46420. [Google Scholar] [CrossRef]
- Akin, S.; Tsai, J.-T.; Park, M.S.; Jeong, Y.H.; Jun, M. Fabrication of Electrically Conductive Patterns on ABS Polymer Using Low-Pressure Cold Spray and Electroless Plating. J. Micro Nanomanuf. 2021, 8, V002T08A015. [Google Scholar] [CrossRef]
- Akin, S.; Lee, S.; Jo, S.; Ruzgar, D.G.; Subramaniam, K.; Tsai, J.-T.; Jun, M.B.-G. Cold Spray-Based Rapid and Scalable Production of Printed Flexible Electronics. Addit. Manuf. 2022, 60, 103244. [Google Scholar] [CrossRef]
- Juhász Junger, I.; Großerhode, C.; Storck, J.L.; Kohn, S.; Grethe, T.; Grassmann, C.; Schwarz-Pfeiffer, A.; Grimmelsmann, N.; Meissner, H.; Blachowicz, T.; et al. Influence of Graphite-Coating Methods on the DSSC Performance. Optik 2018, 174, 40–45. [Google Scholar] [CrossRef]
- Melentiev, R.; Yudhanto, A.; Tao, R.; Vuchkov, T.; Lubineau, G. Metallization of Polymers and Composites: State-of-the-Art Approaches. Mater. Des. 2022, 221, 110958. [Google Scholar] [CrossRef]
- Saranya, K.; Rameez, M.; Subramania, A. Developments in Conducting Polymer Based Counter Electrodes for Dye-Sensitized Solar Cells—An Overview. Eur. Polym. J. 2015, 66, 207–227. [Google Scholar] [CrossRef]
- Sayyed, S.A.A.R.; Beedri, N.I.; Pathan, H.M. Spinach Extract and Eosin-Y Co-Sensitized Ceria Photoanode for Dye Sensitized Solar Cell Application: Effect of Dye Adsorption Time. J. Mater. Sci. Mater. Electron. 2017, 28, 5075–5081. [Google Scholar] [CrossRef]
- Richhariya, G.; Kumar, A. Fabrication and Characterization of Mixed Dye: Natural and Synthetic Organic Dye. Opt. Mater. 2018, 79, 296–301. [Google Scholar] [CrossRef]
- Raut, P.; Kishnani, V.; Mondal, K.; Gupta, A.; Jana, S.C. A Review on Gel Polymer Electrolytes for Dye-Sensitized Solar Cells. Micromachines 2022, 13, 680. [Google Scholar] [CrossRef] [PubMed]
- Bella, F.; Nair, J.R.; Gerbaldi, C. Towards Green, Efficient and Durable Quasi-Solid Dye-Sensitized Solar Cells Integrated with a Cellulose-Based Gel-Polymer Electrolyte Optimized by a Chemometric DoE Approach. RSC Adv. 2013, 3, 15993–16001. [Google Scholar] [CrossRef]
- Rokke, D.; Deshmukh, S.D.; Agrawal, R. A Novel Approach to Amine-Thiol Molecular Precursors for Fabrication of High Efficiency Thin Film CISSe/CIGSSe Devices. In Proceedings of the 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 1813–1815. [Google Scholar] [CrossRef]
- Pazoki, M.; Cappel, U.B.; Johansson, E.M.J.; Hagfeldt, A.; Boschloo, G. Characterization Techniques for Dye-Sensitized Solar Cells. Energy Environ. Sci. 2017, 10, 672–709. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Lee, H.C.; Alam Khan, M.; Yang, O.B. Electrodeposition of TiO2/SiO2 Nanocomposite for Dye-Sensitized Solar Cell. Sol. Energy 2007, 81, 529–534. [Google Scholar] [CrossRef]
- Mali, S.S.; Betty, C.A.; Bhosale, P.N.; Patil, P.S. Eosin-Y and N3-Dye Sensitized Solar Cells (DSSCs) Based on Novel Nanocoral TiO2: A Comparative Study. Electrochim. Acta 2012, 59, 113–120. [Google Scholar] [CrossRef]
- Cole, J.M.; Gong, Y.; McCree-Grey, J.; Evans, P.J.; Holt, S.A. Modulation of N3 and N719 Dye···TiO2 Interfacial Structures in Dye-Sensitized Solar Cells As Influenced by Dye Counter Ions, Dye Deprotonation Levels, and Sensitizing Solvent. ACS Appl. Energy Mater. 2018, 1, 2821–2831. [Google Scholar] [CrossRef]
- Ileperuma, O.A. Gel Polymer Electrolytes for Dye Sensitised Solar Cells: A Review. Mater. Technol. 2013, 28, 65–70. [Google Scholar] [CrossRef]
- Elbohy, H.; El-Mahalawy, H.; El-Ghamaz, N.A.; Zidan, H. Hysteresis Analysis in Dye-Sensitized Solar Cell Based on Different Metal Alkali Cations in the Electrolyte. Electrochim. Acta 2019, 319, 110–117. [Google Scholar] [CrossRef]
- Tang, Q.; Wang, J.; He, B.; Yang, P. Can Dye-Sensitized Solar Cells Generate Electricity in the Dark? Nano Energy 2017, 33, 266–271. [Google Scholar] [CrossRef]
Parameter | Setting | |
---|---|---|
| Filament diameter (mm) | 1.75 |
Nozzle diameter (mm) | 0.4 | |
Bed temperature () | 60 | |
Extruder temperature () | 200 | |
Infill density (%) | 80 | |
Layer height (mm) | 0.2 | |
Print speed (mm/s) | 40 | |
First-layer speed (mm/s) | 10 | |
| Gas type | Air |
Gas pressure (MPa) | 0.7 | |
Powder feed rate (g/s) | 0.2 | |
Nozzle speed (mm/s) | 100 | |
Spray distance (mm) | 10 | |
Number of passes | 1 | |
| A thin film of graphite was over-deposited by a 4B graphite pencil. |
DSSC with | Jsc (mA/cm2) | Voc (V) | FF (%) | Efficiency (%) |
---|---|---|---|---|
AM-CE * | 1.9 | 0.51 | 47.8 | 0.45 |
FTO/glass | 1.6 | 0.42 | 26.7 | 0.18 |
Material | Electrical Resistance (ohm) | Average Surface Roughness (Ra) (µm) |
---|---|---|
AM-CE * | 0.092 ± 0.005 | 6.317 ± 0.87 |
FTO/glass | 36.9 ± 0.535 | 0.172 ± 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akin, S.; Kim, S.; Song, C.K.; Nam, S.Y.; Jun, M.B.-G. Fully Additively Manufactured Counter Electrodes for Dye-Sensitized Solar Cells. Micromachines 2024, 15, 464. https://doi.org/10.3390/mi15040464
Akin S, Kim S, Song CK, Nam SY, Jun MB-G. Fully Additively Manufactured Counter Electrodes for Dye-Sensitized Solar Cells. Micromachines. 2024; 15(4):464. https://doi.org/10.3390/mi15040464
Chicago/Turabian StyleAkin, Semih, Sungdo Kim, Chul Ki Song, Sang Yong Nam, and Martin Byung-Guk Jun. 2024. "Fully Additively Manufactured Counter Electrodes for Dye-Sensitized Solar Cells" Micromachines 15, no. 4: 464. https://doi.org/10.3390/mi15040464
APA StyleAkin, S., Kim, S., Song, C. K., Nam, S. Y., & Jun, M. B. -G. (2024). Fully Additively Manufactured Counter Electrodes for Dye-Sensitized Solar Cells. Micromachines, 15(4), 464. https://doi.org/10.3390/mi15040464