Evaluation of Fluid Behaviors in a Pushbutton-Activated Microfluidic Device for User-Independent Flow Control
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silicon Wafer Micropatterning
2.2. Fabrication of a Pushbutton-Activated Microfluidic Device (PAMD)
2.3. 3D Printing of a Press Rod and a Pressing Block
2.4. Customized Pressing Machine
2.5. Flow Rate and Pressure Measurements
2.6. Image of the Deflection of the Actuation Chamber
3. Results and Discussion
3.1. System Setup of the Press Control Machine and Working Principle of PAMD
3.2. Validation of the Customized Press Control Machine
3.3. Evaluation of Flow Behavior Based on the Design Parameters of PAMD
3.4. Evaluation of Flow Behavior Based on the Pressing Velocity and the Rod Diameter
3.5. Relationship of Pressing Depth and Flow Rate in the PAMD
3.6. User-Friendly PAMD Using a Press Control Machine
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jung, W.; Han, J.; Choi, J.-W.; Ahn, C.H. Point-of-care testing (POCT) diagnostic systems using microfluidic lab-on-a-chip technologies. Microelectron. Eng. 2015, 132, 46–57. [Google Scholar] [CrossRef]
- Mejia-Salazar, J.R.; Rodrigues Cruz, K.; Materon Vasques, E.M.; Novais de Oliveira, O., Jr. Microfluidic point-of-care devices: New trends and future prospects for eHealth diagnostics. Sensors 2020, 20, 1951. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, S.; Davis, R.W.; Saha, A.K. Microfluidic point-of-care testing: Commercial landscape and future directions. Front Bioeng. Biotechnol. 2020, 8, 602659. [Google Scholar] [CrossRef]
- Xie, Y.; Dai, L.; Yang, Y. Microfluidic technology and its application in the point-of-care testing field. Biosens. Bioelectron. X 2022, 10, 100109. [Google Scholar] [CrossRef] [PubMed]
- Petralia, S.; Conoci, S. PCR technologies for point of care testing: Progress and perspectives. ACS Sens. 2017, 2, 876–891. [Google Scholar] [CrossRef] [PubMed]
- Jagannath, A.; Cong, H.; Hassan, J.; Gonzalez, G.; Gilchrist, M.D.; Zhang, N. Pathogen detection on microfluidic platforms: Recent advances, challenges, and prospects. Biosens. Bioelectron. X 2022, 10, 100134. [Google Scholar] [CrossRef]
- Yang, S.M.; Lv, S.; Zhang, W.; Cui, Y. Microfluidic point-of-care (POC) devices in early diagnosis: A review of opportunities and challenges. Sensors 2022, 22, 1620. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; You, M.; Li, S.; Hu, J.; Liu, C.; Gong, Y.; Yang, H.; Xu, F. Paper-based point-of-care immunoassays: Recent advances and emerging trends. Biotechnol. Adv. 2020, 39, 107442. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, F.; Chiarello, M.; Cavalera, S.; Baggiani, C.; Anfossi, L. Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors 2021, 21, 5185. [Google Scholar] [CrossRef]
- Manmana, Y.; Kubo, T.; Otsuka, K. Recent developments of point-of-care (POC) testing platform for biomolecules. TrAC Trends Anal. Chem. 2021, 135, 116160. [Google Scholar] [CrossRef]
- Land, K.J.; Boeras, D.I.; Chen, X.S.; Ramsay, A.R.; Peeling, R.W. REASSURED diagnostics to inform disease control strategies, strengthen health systems and improve patient outcomes. Nat. Microbiol. 2019, 4, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Otoo, J.A.; Schlappi, T.S. REASSURED multiplex diagnostics: A critical review and forecast. Biosensors 2022, 12, 124. [Google Scholar] [CrossRef] [PubMed]
- Moetlhoa, B.; Maluleke, K.; Mathebula, E.M.; Kgarosi, K.; Nxele, S.R.; Lenonyane, B.; Mashamba-Thompson, T. REASSURED diagnostics at point-of-care in sub-Saharan Africa: A scoping review. PLoS Glob. Public Health 2023, 3, e0001443. [Google Scholar] [CrossRef] [PubMed]
- Yeh, E.-C.; Fu, C.-C.; Hu, L.; Thakur, R.; Feng, J.; Lee, L.P. Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip. Sci. Adv. 2017, 3, e1501645. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Kim, B.; Kim, Y.J.; Choi, S. Integrated microfluidic pneumatic circuit for point-of-care molecular diagnostics. Biosens. Bioelectron. 2019, 133, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Koh, D.; Schneider, P.; Breloff, E.; Oh, K.W. A compact, syringe-assisted, vacuum-driven micropumping device. Micromachines 2019, 10, 543. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Shah, G.; Fang, J. Highly sensitive and miniaturized fluorescence detection system with an autonomous capillary fluid manipulation chip. Micromachines 2012, 3, 462–479. [Google Scholar] [CrossRef]
- Tang, R.; Yang, H.; Choi, J.R.; Gong, Y.; You, M.; Wen, T.; Li, A.; Li, X.; Xu, B.; Zhang, S.; et al. Capillary blood for point-of-care testing. Crit. Rev. Clin. Lab. Sci. 2017, 54, 294–308. [Google Scholar] [CrossRef]
- Ghosh, S.; Aggarwal, K.; U, V.T.; Nguyen, T.; Han, J.; Ahn, C.H. A new microchannel capillary flow assay (MCFA) platform with lyophilized chemiluminescence reagents for a smartphone-based POCT detecting malaria. Microsyst. Nanoeng. 2020, 6, 5. [Google Scholar] [CrossRef]
- Qin, L.; Vermesh, O.; Shi, Q.; Heath, J.R. Self-powered microfluidic chips for multiplexed protein assays from whole blood. Lab Chip 2009, 9, 2016–2020. [Google Scholar] [CrossRef]
- Guler, M.T.; Isiksacan, Z.; Serhatlioglu, M.; Elbuken, C. Self-powered disposable prothrombin time measurement device with an integrated effervescent pump. Sens. Actuators B Chem. 2018, 273, 350–357. [Google Scholar] [CrossRef]
- Yang, J.; Liu, X.; Pan, Y.; Yang, J.; He, B.; Fu, Y.; Song, Y. A self-powered microfluidic chip integrated with fluorescent microscopic counting for biomarkers assay. Sens. Actuators B Chem. 2019, 291, 192–199. [Google Scholar] [CrossRef]
- Qiu, X.; Thompson, J.A.; Chen, Z.; Liu, C.; Chen, D.; Ramprasad, S.; Mauk, M.G.; Ongagna, S.; Barber, C.; Abrams, W.R.; et al. Finger-actuated, self-contained immunoassay cassettes. Biomed. Microdevices 2009, 11, 1175–1186. [Google Scholar] [CrossRef] [PubMed]
- Iwai, K.; Shih, K.C.; Lin, X.; Brubaker, T.A.; Sochol, R.D.; Lin, L. Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes. Lab Chip 2014, 14, 3790–3799. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Kim, B.-k.; Lee, K.K. Finger-powered, capillary-driven blood diagnostic chip for point-of-care technology. Sens. Actuators A Phys. 2020, 312, 112153. [Google Scholar] [CrossRef]
- Park, J.; Park, J.-K. Finger-actuated microfluidic device for the blood cross-matching test. Lab Chip 2018, 18, 1215–1222. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Xing, G.; Liu, X.; Lin, H.; Lin, J.M. Fully integrated microfluidic biosensor with finger actuation for the ultrasensitive detection of Escherichia coli O157:H7. Anal. Chem. 2022, 94, 16787–16795. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, Y.; Lin, L.; Wu, T.; Zhao, Z.; Ying, B.; Chang, L. A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosens. Bioelectron. 2022, 195, 113663. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; Park, J.; Kim, S.J.; Ko, D.-H.; Lee, S.H.; Lee, S.J.; Park, J.-K.; Lee, M.-K. On-site extraction and purification of bacterial nucleic acids from blood samples using an unpowered microfluidic device. Sens. Actuators B Chem. 2020, 320, 128346. [Google Scholar] [CrossRef]
- Park, J.; Lee, K.G.; Han, D.H.; Lee, J.S.; Lee, S.J.; Park, J.-K. Pushbutton-activated microfluidic dropenser for droplet digital PCR. Biosens. Bioelectron. 2021, 181, 113159. [Google Scholar] [CrossRef]
- Cui, F.; Rhee, M.; Singh, A.; Tripathi, A. Microfluidic sample preparation for medical diagnostics. Annu. Rev. Biomed. Eng. 2015, 17, 267–286. [Google Scholar] [CrossRef] [PubMed]
- Hosic, S.; Murthy, S.K.; Koppes, A.N. Microfluidic sample preparation for single cell analysis. Anal. Chem. 2016, 88, 354–380. [Google Scholar] [CrossRef]
- Xiang, N.; Ni, Z. Inertial microfluidics: Current status, challenges, and future opportunities. Lab Chip 2022, 22, 4792–4804. [Google Scholar] [CrossRef]
- Park, J.; Park, J.-K. Pushbutton-activated microfluidic cartridge as a user-friendly sample preparation tool for diagnostics. Biomicrofluidics 2021, 15, 041302. [Google Scholar] [CrossRef]
- Lee, G.; Kim, S.J.; Park, J.-K. Bioprinting of heterogeneous and multilayered cell-hydrogel constructs using continuous multi-material printing and aerosol-based crosslinking. STAR Protoc. 2022, 3, 101303. [Google Scholar] [CrossRef] [PubMed]
- Iakovlev, A.P.; Erofeev, A.S.; Gorelkin, P.V. Novel pumping methods for microfluidic devices: A comprehensive review. Biosensors 2022, 12, 956. [Google Scholar] [CrossRef]
- Zhang, X.; Xiang, N.; Tang, W.; Huang, D.; Wang, X.; Yi, H.; Ni, Z. A passive flow regulator with low threshold pressure for high-throughput inertial isolation of microbeads. Lab Chip 2015, 15, 3473–3480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, X.; Chen, K.; Cheng, J.; Xiang, N.; Ni, Z. Passive flow regulator for precise high-throughput flow rate control in microfluidic environments. RSC Adv. 2016, 6, 31639–31646. [Google Scholar] [CrossRef]
- Kimura, N.; Maeki, M.; Sato, Y.; Ishida, A.; Tani, H.; Harashima, H.; Tokeshi, M. Development of a microfluidic-based post-treatment process for size-controlled lipid nanoparticles and application to siRNA delivery. ACS Appl. Mater. Interfaces 2020, 12, 34011–34020. [Google Scholar] [CrossRef]
- Chen, T.; Yin, S.; Wu, J. Nanomaterials meet microfluidics: Improved analytical methods and high-throughput synthetic approaches. Trends Anal. Chem. 2021, 142, 116309. [Google Scholar] [CrossRef]
- Dalibera, N.C.; Oliveira, A.F.; Azzoni, A.R. Synthesis of gold nanoparticles with different sizes and morphologies using a single LTCC-based microfluidic system for point-of-care use in personalized medicine. Microfluid. Nanofluid. 2023, 27, 56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, D.H.; Lee, G.; Oh, U.; Choi, Y.; Park, J.-K. Evaluation of Fluid Behaviors in a Pushbutton-Activated Microfluidic Device for User-Independent Flow Control. Micromachines 2024, 15, 465. https://doi.org/10.3390/mi15040465
Han DH, Lee G, Oh U, Choi Y, Park J-K. Evaluation of Fluid Behaviors in a Pushbutton-Activated Microfluidic Device for User-Independent Flow Control. Micromachines. 2024; 15(4):465. https://doi.org/10.3390/mi15040465
Chicago/Turabian StyleHan, Dong Hyun, Gihyun Lee, Untaek Oh, Yejin Choi, and Je-Kyun Park. 2024. "Evaluation of Fluid Behaviors in a Pushbutton-Activated Microfluidic Device for User-Independent Flow Control" Micromachines 15, no. 4: 465. https://doi.org/10.3390/mi15040465
APA StyleHan, D. H., Lee, G., Oh, U., Choi, Y., & Park, J. -K. (2024). Evaluation of Fluid Behaviors in a Pushbutton-Activated Microfluidic Device for User-Independent Flow Control. Micromachines, 15(4), 465. https://doi.org/10.3390/mi15040465