Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition
Abstract
:1. Background of the Study
1.1. Introduction to Flexible Organic Electroluminescent Devices and Their Stability Issues
1.2. Thin-Film Packaging Technology and Its Flexible Applications
1.3. Introduction to Atomic Layer Deposition
2. Research History and Current Status of Development
2.1. Analysis of Inorganic Thin-Film Encapsulation Materials and Their Properties
2.2. Organic–Inorganic Composite Package Structure
2.3. Flexible Package Structure Design
2.3.1. Stress-Neutralizing Structural Design
2.3.2. Repair of Defects in Inorganic Films
2.3.3. Neutral Surface Studies
3. The Development of Flexible Encapsulation Films
4. Summary and Outlook
Funding
Conflicts of Interest
References
- Hong, G.; Gan, X.; Leonhardt, C.; Zhang, Z.; Seibert, J.; Busch, J.M.; Braese, S. A Brief History of OLEDs-Emitter Development and Industry Milestones. Adv. Mater. 2021, 33, 2005630. [Google Scholar] [CrossRef] [PubMed]
- Geffroy, B.; le Roy, P.; Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 2006, 55, 572–582. [Google Scholar] [CrossRef]
- Kulkarni, A.P.; Tonzola, C.J.; Babel, A.; Jenekhe, S.A. Electron transport materials for organic light-emitting diodes. Chem. Mater. 2004, 16, 4556–4573. [Google Scholar] [CrossRef]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.R.; Giebink, N.C.; Kanno, H.; Ma, B.W.; Thompson, M.E.; Forrest, S.R. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440, 908–912. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, L.; Tang, D.; Cho, Y.; Liu, X.; Zhou, X.; Lu, L.; Zhang, L.; Takeda, T.; Hirosaki, N.; et al. Achieving High Quantum Efficiency Narrow-Band beta-Sialon:Eu2+ Phosphors for High-Brightness LCD Backlights by Reducing the Eu3+ Luminescence Killer. Chem. Mater. 2018, 30, 494–505. [Google Scholar] [CrossRef]
- Chiu, H.-J.; Cheng, S.-J. LED backlight driving system for large-scale LCD panels. IEEE Trans. Ind. Electron. 2007, 54, 2751–2760. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, J.G.; Jung, S.-G.; Lee, D.J.; Park, Y.W.; Ju, B.-K. Optical characteristics of refractive- index-matching diffusion layer in organic light-emitting diodes. Sci. Rep. 2019, 9, 8690. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Oh, S.-W.; Choi, T.-H.; Yu, B.-H.; Yoon, T.-H. Formation of polymer structure by thermally-induced phase separation for a dye-doped liquid crystal light shutter. Dye. Pigment. 2019, 163, 749–753. [Google Scholar] [CrossRef]
- Ma, H.; Yip, H.-L.; Huang, F.; Jen, A.K.Y. Interface Engineering for Organic Electronics. Adv. Funct. Mater. 2010, 20, 1371–1388. [Google Scholar] [CrossRef]
- Gross, M.; Muller, D.C.; Nothofer, H.G.; Scherf, U.; Neher, D.; Brauchle, C.; Meerholz, K. Improving the performance of doped pi-conjugated polymers for use in organic light-emitting diodes. Nature 2000, 405, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhang, H.; Zhang, B.; Xie, Z.; Wong, W.-Y. Towards high-power-efficiency solution-processed OLEDs: Material and device perspectives. Mater. Sci. Eng. R-Rep. 2020, 140, 100547. [Google Scholar] [CrossRef]
- Li, C.-C.; Tseng, H.-Y.; Liao, H.-C.; Chen, H.-M.; Hsieh, T.; Lin, S.-A.; Jau, H.-C.; Wu, Y.-C.; Hsu, Y.-L.; Hsu, W.-H.; et al. Enhanced image quality of OLED transparent display by cholesteric liquid crystal back-panel. Opt. Express 2017, 25, 29199–29206. [Google Scholar] [CrossRef]
- Vashishtha, P.; Ng, M.; Shivarudraiah, S.B.; Halpert, J.E. High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden-Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers. Chem. Mater. 2019, 31, 83–89. [Google Scholar] [CrossRef]
- Zou, S.-J.; Shen, Y.; Xie, F.-M.; Chen, J.-D.; Li, Y.-Q.; Tang, J.-X. Recent advances in organic light-emitting diodes: Toward smart lighting and displays. Mater. Chem. Front. 2020, 4, 788–820. [Google Scholar] [CrossRef]
- Bhagat, S.A.; Borghate, S.V.; Kalyani, N.T.; Dhoble, S.J. Novel Na+ doped Alq(3) hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays. Luminescence 2015, 30, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Piksa, M.; Yoshida, K.; Persheyev, S.; Pawlik, K.J.; Matczyszyn, K.; Samuel, I.D.W. Flexible organic light-emitting diodes for antimicrobial photodynamic therapy. NPJ Flex. Electron. 2019, 3, 18. [Google Scholar] [CrossRef]
- Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Luessem, B.; Leo, K. White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459, 234–238. [Google Scholar] [CrossRef] [PubMed]
- White, M.S.; Kaltenbrunner, M.; Glowacki, E.D.; Gutnichenko, K.; Kettlgruber, G.; Graz, I.; Aazou, S.; Ulbricht, C.; Egbe, D.A.M.; Miron, M.C.; et al. Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 2013, 7, 811–816. [Google Scholar] [CrossRef]
- Xu, R.-P.; Li, Y.-Q.; Tang, J.-X. Recent advances in flexible organic light-emitting diodes. J. Mater. Chem. C 2016, 4, 9116–9142. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Feng, J.; Bi, Y.-G.; Yin, D.; Sun, H.-B. Recent Developments in Flexible Organic Light-Emitting Devices. Adv. Mater. Technol. 2019, 4, 1800371. [Google Scholar] [CrossRef]
- Popovic, Z.D.; Aziz, H. Reliability and degradation of small molecule-based organic light-emitting devices (OLEDs). IEEE J. Sel. Top. Quantum Electron. 2002, 8, 362–371. [Google Scholar] [CrossRef]
- Azrain, M.; Omar, G.; Mansor, M.; Fadzullah, S.; Lim, L. Failure mechanism of organic light emitting diodes (OLEDs) induced by hygrothermal effect. Opt. Mater. 2019, 91, 85–92. [Google Scholar] [CrossRef]
- Swayamprabha, S.S.; Dubey, D.K.; Shahnawaz; Yadav, R.A.K.; Nagar, M.R.; Sharma, A.; Tung, F.-C.; Jou, J.-H. Approaches for Long Lifetime Organic Light Emitting Diodes. Adv. Sci. 2021, 8, 2002254. [Google Scholar] [CrossRef] [PubMed]
- Fukagawa, H. Molecular Design and Device Design to Improve Stabilities of Organic Light-Emitting Diodes. J. Photopolym. Sci. Technol. 2018, 31, 315–321. [Google Scholar] [CrossRef]
- Ghosh, A.P.; Gerenser, L.J.; Jarman, C.M.; Fornalik, J.E. Thin-film encapsulation of organic light-emitting devices. Appl. Phys. Lett. 2005, 86, 223503. [Google Scholar] [CrossRef]
- Wang, R.; Mujahid, M.; Duan, Y.; Wang, Z.-K.; Xue, J.; Yang, Y. A Review of Perovskites Solar Cell Stability. Adv. Funct. Mater. 2019, 29, 1808843. [Google Scholar] [CrossRef]
- Jeong, E.G.; Kwon, J.H.; Kang, K.S.; Jeong, S.Y.; Choi, K.C. A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. J. Inf. Disp. 2020, 21, 19–32. [Google Scholar] [CrossRef]
- Park, S.H.K.; Oh, J.; Hwang, C.S.; Lee, J.I.; Yang, Y.S.; Chu, H.Y. Ultrathin film encapsulation of an OLED by ALD. Electrochem. Solid State Lett. 2005, 8, H21–H23. [Google Scholar] [CrossRef]
- Moro, L.; Krajewski, T.A.; Rutherford, N.M.; Philips, O.; Visser, R.J.; Gross, M.E.; Bennett, W.D.; Graff, G.L. Process and design of a multilayer thin film encapsulation of passive matrix OLED displays. In Proceedings of the Conference on Organic Light-Emitting Materials and Devices VII, San Diego, CA, USA, 4–6 August 2003; pp. 83–93. [Google Scholar]
- Wu, J.; Fei, F.; Wei, C.; Chen, X.; Nie, S.; Zhang, D.; Su, W.; Cui, Z. Efficient multi-barrier thin film encapsulation of OLED using alternating Al2O3 and polymer layers. RSC Adv. 2018, 8, 5721–5727. [Google Scholar] [CrossRef]
- Lee, S.; Han, J.H.; Lee, S.H.; Baek, G.H.; Park, J.S. Review of Organic/Inorganic Thin Film Encapsulation by Atomic Layer Deposition for a Flexible OLED Display. JOM 2019, 71, 197–211. [Google Scholar] [CrossRef]
- Madogni, V.I.; Agbomahéna, M.; Kounouhéwa, B.B.; Douhéret, O.; Lazzaroni, R. Effects of Residual Oxygen in the Degradation of the Performance of Organic Bulk Heterojunction Solar Cells: Stability, Role of the Encapsulation. Adv. Mater. Phys. Chem. 2018, 8, 321. [Google Scholar] [CrossRef]
- Park, M.-H.; Han, T.-H.; Kim, Y.-H.; Jeong, S.-H.; Lee, Y.; Seo, H.-K.; Cho, H.; Lee, T.-W. Flexible organic light-emitting diodes for solid-state lighting. J. Photonics Energy 2015, 5, 053599. [Google Scholar] [CrossRef]
- Zhang, D.; Huang, T.; Duan, L. Emerging Self-Emissive Technologies for Flexible Displays. Adv. Mater. 2020, 32, 1902391. [Google Scholar] [CrossRef] [PubMed]
- Gu, G.; Burrows, P.E.; Venkatesh, S.; Forrest, S.R.; Thompson, M.E. Vacuum-deposited, nonpolymeric flexible organic light-emitting devices. Opt. Lett. 1997, 22, 172–174. [Google Scholar] [CrossRef] [PubMed]
- Ai, X.; Evans, E.W.; Dong, S.; Gillett, A.J.; Guo, H.; Chen, Y.; Hele, T.J.H.; Friend, R.H.; Li, F. Efficient radical-based light-emitting diodes with doublet emission. Nature 2018, 563, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Yang, Z.C.; Meng, X.; Yue, Y.F.; Ahmad, M.A.; Zhang, W.J.; Zhang, S.S.; Zhang, Y.Q.; Liu, Z.H.; Chen, W. A Review on Encapsulation Technology from Organic Light Emitting Diodes to Organic and Perovskite Solar Cells. Adv. Funct. Mater. 2021, 31, 2100151. [Google Scholar] [CrossRef]
- Chwang, A.B.; Rothman, M.A.; Mao, S.Y.; Hewitt, R.H.; Weaver, M.S.; Silvernail, J.A.; Rajan, K.; Hack, M.; Brown, J.J.; Chu, X.; et al. Thin film encapsulated flexible organic electroluminescent displays. Appl. Phys. Lett. 2003, 83, 413–415. [Google Scholar] [CrossRef]
- Park, J.S.; Chae, H.; Chung, H.K.; Lee, S.I. Thin film encapsulation for flexible AM-OLED: A review. Semicond. Sci. Technol. 2011, 26, 034001. [Google Scholar] [CrossRef]
- Kwon, S.-K.; Baek, J.-H.; Choi, H.-C.; Kim, S.K.; Lampande, R.; Pode, R.; Kwon, J.H. Degradation of OLED performance by exposure to UV irradiation. RSC Adv. 2019, 9, 42561–42568. [Google Scholar] [CrossRef]
- Lee, Y.I.; Jeon, N.J.; Kim, B.J.; Shim, H.; Yang, T.Y.; Seok, S.I.; Seo, J.; Im, S.G. A low-temperature thin-film encapsulation for enhanced stability of a highly efficient perovskite solar cell. Adv. Energy Mater. 2018, 8, 1701928. [Google Scholar] [CrossRef]
- Choi, J.-H.; Ha, M.-J.; Park, J.C.; Park, T.J.; Kim, W.-H.; Lee, M.-J.; Ahn, J.-H. A Strategy for Wafer-Scale Crystalline MoS2 Thin Films with Controlled Morphology Using Pulsed Metal-Organic Chemical Vapor Deposition at Low Temperature. Adv. Mater. Interfaces 2022, 9, 2101785. [Google Scholar] [CrossRef]
- Salameh, F.; Al Haddad, A.; Picot, A.; Canale, L.; Zissis, G.; Chabert, M.; Maussion, P. Modeling the Luminance Degradation of OLEDs Using Design of Experiments. IEEE Trans. Ind. Appl. 2019, 55, 6548–6558. [Google Scholar] [CrossRef]
- Batey, J.; Tierney, E. Low-temperature deposition of high-quality silicon dioxide by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 1986, 60, 3136–3145. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, J.H.; Kwon, Y.W.; Bae, H.W.; An, M.; Lee, W.; Lee, D. Hydrogen-assisted low-temperature plasma-enhanced chemical vapor deposition of thin film encapsulation layers for top-emission organic light-emitting diodes. Org. Electron. 2021, 97, 106261. [Google Scholar] [CrossRef]
- Zikulnig, J.; Chang, S.; Bito, J.; Rauter, L.; Roshanghias, A.; Carrara, S.; Kosel, J. Printed Electronics Technologies for Additive Manufacturing of Hybrid Electronic Sensor Systems. Adv. Sens. Res. 2023, 2, 2200073. [Google Scholar] [CrossRef]
- Derby, B. Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414. [Google Scholar] [CrossRef]
- Wang, T.; Sun, T.; Xie, C.; Wang, Y.; Qin, C.; Zhang, Z.; Zhou, W.; Zhang, S. SID Symposium Digest of Technical Papers; Wiley Online Library: London, UK, 2019; pp. 1881–1883. [Google Scholar]
- Crowell, J.E. Chemical methods of thin film deposition: Chemical vapor deposition, atomic layer deposition, and related technologies. J. Vac. Sci. Technol. A Vac. Surf. Film. 2003, 21, S88–S95. [Google Scholar] [CrossRef]
- Sabzi, M.; Anijdan, S.H.M.; Shamsodin, M.; Farzam, M.; Hojjati-Najafabadi, A.; Feng, P.; Park, N.; Lee, U. A Review on Sustainable Manufacturing of Ceramic-Based Thin Films by Chemical Vapor Deposition (CVD): Reactions Kinetics and the Deposition Mechanisms. Coatings 2023, 13, 188. [Google Scholar] [CrossRef]
- Puurunen, R.L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- George, S.; Ott, A.; Klaus, J. Surface chemistry for atomic layer growth. J. Phys. Chem. 1996, 100, 13121–13131. [Google Scholar] [CrossRef]
- Forte, M.A.; Silva, R.M.; Tavares, C.J.; Silva, R.F.E. Is Poly(methyl methacrylate) (PMMA) a Suitable Substrate for ALD? A Review. Polymers 2021, 13, 1346. [Google Scholar] [CrossRef]
- Kovacs, R.L.; Csontos, M.; Gyongyosi, S.; Elek, J.; Parditka, B.; Deak, G.; Kuki, A.; Keki, S.; Erdelyi, Z. Surface characterization of plasma-modified low density polyethylene by attenuated total reflectance fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemometrics. Polym. Test. 2021, 96, 107080. [Google Scholar] [CrossRef]
- Clark, M.P.; Muneshwar, T.; Xiong, M.; Cadien, K.; Ivey, D.G. Saturation Behavior of Atomic Layer Deposition MnOx from Bis(Ethylcyclopentadienyl) Manganese and Water: Saturation Effect on Coverage of Porous Oxygen Reduction Electrodes for Metal-Air Batteries. ACS Appl. Nano Mater. 2019, 2, 267–277. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef] [PubMed]
- de la Huerta, C.M.; Huong, N.V.; Dedulle, J.-M.; Bellet, D.; Jimenez, C.; Munoz-Rojas, D. Influence of the Geometric Parameters on the Deposition Mode in Spatial Atomic Layer Deposition: A Novel Approach to Area-Selective Deposition. Coatings 2019, 9, 5. [Google Scholar] [CrossRef]
- Shahmohammadi, M.; Mukherjee, R.; Takoudis, C.G.; Diwekar, U.M. Optimal design of novel precursor materials for the atomic layer deposition using computer-aided molecular design. Chem. Eng. Sci. 2021, 234, 116416. [Google Scholar] [CrossRef]
- Fabreguette, F.H.; Wind, R.A.; George, S.M. Ultrahigh x-ray reflectivity from W/ Al2O3 multilayers fabricated using atomic layer deposition. Appl. Phys. Lett. 2006, 88, 013116. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, X.; Chen, H.; Zhang, K.; Qin, C.; Liu, J.; Peng, W.; Islam, A.; Bi, E.; Ye, F.; et al. Highly compact TiO2 layer for efficient hole-blocking in perovskite solar cells. Appl. Phys. Express 2014, 7, 052301. [Google Scholar] [CrossRef]
- Graniel, O.; Weber, M.; Balme, S.; Miele, P.; Bechelany, M. Atomic layer deposition for biosensing applications. Biosens. Bioelectron. 2018, 122, 147–159. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q.; Kang, Z.; Yan, X.; Zhang, Y.; Wang, X. Enhanced photoelectrochemical effciency and stability using a conformal TiO2 film on a black silicon photoanode. Nat. Energy 2017, 2, 17045. [Google Scholar] [CrossRef]
- Sheng, J.; Lee, J.-H.; Choi, W.-H.; Hong, T.; Kim, M.; Park, J.-S. Review Article: Atomic layer deposition for oxide semiconductor thin film transistors: Advances in research and development. J. Vac. Sci. Technol. A 2018, 36, 060801. [Google Scholar] [CrossRef]
- Song, E.; Lee, Y.K.; Li, R.; Li, J.; Jin, X.; Yu, K.J.; Xie, Z.; Fang, H.; Zhong, Y.; Du, H.; et al. Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Adv. Funct. Mater. 2018, 28, 1702284. [Google Scholar] [CrossRef]
- Sheng, J.; Hong, T.; Kang, D.; Yi, Y.; Lim, J.H.; Park, J.-S. Design of InZnSnO Semiconductor Alloys Synthesized by Supercycle Atomic Layer Deposition and Their Rollable Applications. ACS Appl. Mater. Interfaces 2019, 11, 12683–12692. [Google Scholar] [CrossRef]
- Multia, J.; Heiska, J.; Khayyami, A.; Karppinen, M. Electrochemically Active In Situ Crystalline Lithium-Organic Thin Films by ALD/MLD. ACS Appl. Mater. Interfaces 2020, 12, 41557–41566. [Google Scholar] [CrossRef] [PubMed]
- Ponja, S.D.; Williamson, B.A.D.; Sathasivam, S.; Scanlon, D.O.; Parkin, I.P.; Carmalt, C.J. Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition. J. Mater. Chem. C 2018, 6, 7257–7266. [Google Scholar] [CrossRef]
- Islam, M.R.; Rahman, M.; Farhad, S.F.U.; Podder, J. Structural, optical and photocatalysis properties of sol-gel deposited Al-doped ZnO thin films. Surf. Interfaces 2019, 16, 120–126. [Google Scholar] [CrossRef]
- International Technology Roadmap for Semiconductors. 2007 Edition. Available online: http://www.itrs.net/ (accessed on 3 December 2023).
- Chou, C.-T.; Yu, P.-W.; Tseng, M.-H.; Hsu, C.-C.; Shyue, J.-J.; Wang, C.-C.; Tsai, F.-Y. Transparent Conductive Gas-Permeation Barriers on Plastics by Atomic Layer Deposition. Adv. Mater. 2013, 25, 1750–1754. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Y.; Yang, H.; Cao, K.; Chen, R. Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition. J. Mater. Res. 2020, 35, 681–700. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Kim, L.H.; Jang, J.H.; Jeong, Y.J.; Kim, K.; Baek, Y.; Kwon, H.-J.; An, T.K.; Nam, S.; Kim, S.H.; Jang, J. Highly-impermeable Al2O3/HfO2 moisture barrier films grown by low-temperature plasma-enhanced atomic layer deposition. Org. Electron. 2017, 50, 296–303. [Google Scholar] [CrossRef]
- Zhu, Z.; Merdes, S.; Ylivaara, O.M.E.; Mizohata, K.; Heikkila, M.J.; Savin, H. Al2O3 Thin Films Prepared by a Combined Thermal-Plasma Atomic Layer Deposition Process at Low Temperature for Encapsulation Applications. Phys. Status Solidi A-Appl. Mater. Sci. 2020, 217, 1900237. [Google Scholar] [CrossRef]
- Oh, J.; Shin, S.; Park, J.; Ham, G.; Jeon, H. Characteristics of Al2O3/ZrO2 laminated films deposited by ozone-based atomic layer deposition for organic device encapsulation. Thin Solid Film. 2016, 599, 119–124. [Google Scholar] [CrossRef]
- Li, C.; Cauwe, M.; Yang, Y.; Schaubroeck, D.; Mader, L.; de Beeck, M.O. Ultra-Long-Term Reliable Encapsulation Using an Atomic Layer Deposited HfO2/Al2O3/HfO2 Triple-Interlayer for Biomedical Implants. Coatings 2019, 9, 579. [Google Scholar] [CrossRef]
- Lee, Y.; Seo, S.; Oh, I.-K.; Lee, S.; Kim, H. Effects of O2 plasma treatment on moisture barrier properties of SiO2 grown by plasma-enhanced atomic layer deposition. Ceram. Int. 2019, 45, 17662–17668. [Google Scholar] [CrossRef]
- Lee, U.S.; Choi, J.S.; Yang, B.S.; Oh, S.; Kim, Y.J.; Oh, M.S.; Heo, J.; Kim, H.J. Formation of a Bilayer of ALD-SiO2 and Sputtered Al2O3/ZrO2 Films on Polyethylene Terephthalate Substrates as a Moisture Barrier. Ecs Solid State Lett. 2013, 2, R13–R15. [Google Scholar]
- Kukli, K.; Kemell, M.; Castan, H.; Duenas, S.; Seemen, H.; Rahn, M.; Link, J.; Stern, R.; Heikkila, M.J.; Ritala, M.; et al. Atomic Layer Deposition and Performance of ZrO2-Al2O3 Thin Films. ECS J. Solid State Sci. Technol. 2018, 7, P287–P294. [Google Scholar] [CrossRef]
- Yu, D.; Yang, Y.-Q.; Chen, Z.; Tao, Y.; Liu, Y.-F. Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 2016, 362, 43–49. [Google Scholar] [CrossRef]
- Yun, S.J.; Lim, J.W.; Lee, J.H. Low-temperature deposition of aluminum oxide on polyethersulfone substrate using plasma-enhanced atomic layer deposition. Electrochem. Solid State Lett. 2004, 7, C13–C15. [Google Scholar] [CrossRef]
- Yang, Y.-Q.; Duan, Y.; Chen, P.; Sun, F.-B.; Duan, Y.-H.; Wang, X.; Yang, D. Realization of Thin Film Encapsulation by Atomic Layer Deposition of Al2O3 at Low Temperature. J. Phys. Chem. C 2013, 117, 20308–20312. [Google Scholar] [CrossRef]
- Lim, J.W.; Yun, S.J. Electrical properties of alumina films by plasma-enhanced atomic layer deposition. Electrochem. Solid State Lett. 2004, 7, F45–F48. [Google Scholar] [CrossRef]
- Iliescu, C.; Avram, M.; Chen, B.; Popescu, A.; Dumitrescu, V.; Poenar, D.P.; Sterian, A.; Vrtacnik, D.; Amon, S.; Sterian, P. Residual stress in thin films PECVD depositions: A review. J. Optoelectron. Adv. Mater. 2011, 13, 387–394. [Google Scholar]
- Zhang, S.; Shi, W.; Siegler, T.D.; Gao, X.; Ge, F.; Korgel, B.A.; He, Y.; Li, S.; Wang, X. An All-Inorganic Colloidal Nanocrystal Flexible Polarizer. Angew. Chem. Int. Ed. 2019, 58, 8730–8735. [Google Scholar] [CrossRef]
- Yuan, Y.; Xie, S.; Ding, C.; Shi, X.; Xu, J.; Li, K.; Zhao, W. Fabricating flexible wafer-size inorganic semiconductor devices. J. Mater. Chem. C 2020, 8, 1915–1922. [Google Scholar] [CrossRef]
- Yeom, B.; Kim, S.; Cho, J.; Hahn, J.; Char, K. Effect of interfacial adhesion on the mechanical properties of organic/inorganic hybrid nanolaminates. J. Adhes. 2006, 82, 447–468. [Google Scholar] [CrossRef]
- Yeom, B.; Jeong, A.; Lee, J.; Char, K. Enhancement of fracture toughness in organic/inorganic hybrid nanolaminates with ultrathin adhesive layers. Polymer 2016, 91, 187–193. [Google Scholar] [CrossRef]
- Tu, N.; Jiang, J.; Chen, Q.; Liao, J.; Liu, W.; Yang, Q.; Jiang, L.; Zhou, Y. Flexible ferroelectric capacitors based on Bi3.15Nd0.85Ti3O12/muscovite structure. Smart Mater. Struct. 2019, 28, 054002. [Google Scholar] [CrossRef]
- Niu, R.; Liu, G.; Ding, X.; Sun, J. Ductility of metal thin films in flexible electronics. Sci. China Ser. E-Technol. Sci. 2008, 51, 1971–1979. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Liu, J.; Adair, K.; Zhao, F.; Sun, Y.; Wu, T.; Bi, X.; Amine, K.; Lu, J.; et al. Atomic/molecular layer deposition for energy storage and conversion. Chem. Soc. Rev. 2021, 50, 3889–3956. [Google Scholar] [CrossRef] [PubMed]
- Multia, J.; Karppinen, M. Atomic/Molecular Layer Deposition for Designer’s Functional Metal-Organic Materials. Adv. Mater. Interfaces 2022, 9, 2200210. [Google Scholar] [CrossRef]
- McIntee, O.M.; Welch, B.C.; Greenberg, A.R.; George, S.M.; Bright, V.M. Elastic modulus of polyamide thin films formed by molecular layer deposition. Polymer 2022, 255, 125167. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, K.H.; Im, S.; Sung, M.M. Vapor-Phase Molecular Layer Deposition of Self-Assembled Multilayers for Organic Thin-Film Transistor. J. Nanosci. Nanotechnol. 2009, 9, 6962–6967. [Google Scholar] [CrossRef]
- Muneshwar, T.; Cadien, K. Surface reaction kinetics in atomic layer deposition: An analytical model and experiments. J. Appl. Phys. 2018, 124, 095302. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Xu, X.; Liu, Y.; Chen, C.; Chen, P.; Hu, W.; Duan, Y. Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance. Appl. Phys. Lett. 2019, 114, 201902. [Google Scholar] [CrossRef]
- Schaepkens, M.; Kim, T.W.; Erlat, A.G.; Yan, M.; Flanagan, K.W.; Heller, C.M.; McConnelee, P.A. Ultrahigh barrier coating deposition on polycarbonate substrates. J. Vac. Sci. Technol. A 2004, 22, 1716–1722. [Google Scholar] [CrossRef]
- Perrotta, A.; Aresta, G.; van Beekum, E.R.J.; Palmans, J.; van de Weijer, P.; van de Sanden, M.C.M.R.; Kessels, W.M.M.E.; Creatore, M. The impact of the nano-pore filling on the performance of organosilicon-based moisture barriers. Thin Solid Film. 2015, 595, 251–257. [Google Scholar] [CrossRef]
- Chen, D.H.; Ozaki, S. Stress concentration due to defects in a honeycomb structure. Compos. Struct. 2009, 89, 52–59. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, Y. Sawing stress of SiC single crystal with void defect in diamond wire saw slicing. Int. J. Adv. Manuf. Technol. 2019, 103, 1019–1031. [Google Scholar] [CrossRef]
- Carcia, P.F.; McLean, R.; Reilly, M.; Groner, M.; George, S. Ca test of Al2O3 gas diffusion barriers grown by atomic layer deposition on polymers. Appl. Phys. Lett. 2006, 89, 031915. [Google Scholar] [CrossRef]
- Choi, H.; Shin, S.; Jeon, H.; Choi, Y.; Kim, J.; Kim, S.; Chung, S.C.; Oh, K. Fast spatial atomic layer deposition of Al2O3 at low temperature (<100 degrees C) as a gas permeation barrier for flexible organic light-emitting diode displays. J. Vac. Sci. Technol. A 2016, 34, 01A121. [Google Scholar]
- Keuning, W.; van de Weijer, P.; Lifka, H.; Kessels, W.M.M.; Creatore, M. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al2O3 films and Al2O3/a-SiNx:H stacks. J. Vac. Sci. Technol. A 2012, 30, 01A131. [Google Scholar] [CrossRef]
- Meyer, J.; Görrn, P.; Bertram, F.; Hamwi, S.; Winkler, T.; Johannes, H.H.; Weimann, T.; Hinze, P.; Riedl, T.; Kowalsky, W. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers—A strategy for reliable encapsulation of organic electronics. Adv. Mater. 2009, 21, 1845–1849. [Google Scholar] [CrossRef]
- Seo, S.-W.; Jung, E.; Chae, H.; Cho, S.M. Optimization of Al2O3/ZrO2 nanolaminate structure for thin-film encapsulation of OLEDs. Org. Electron. 2012, 13, 2436–2441. [Google Scholar] [CrossRef]
- Kim, L.H.; Kim, K.; Park, S.; Jeong, Y.J.; Kim, H.; Chung, D.S.; Kim, S.H.; Park, C.E. Al2O3/TiO2 nanolaminate thin film encapsulation for organic thin film transistors via plasma-enhanced atomic layer deposition. Acs Appl. Mater. Interfaces 2014, 6, 6731–6738. [Google Scholar] [CrossRef]
- Choi, H.; Lee, S.; Jung, H.; Shin, S.; Ham, G.; Seo, H.; Jeon, H. Moisture Barrier Properties of Al2O3 Films deposited by Remote Plasma Atomic Layer Deposition at Low Temperatures. Jpn. J. Appl. Phys. 2013, 52, 035502. [Google Scholar] [CrossRef]
- Pilz, J.; Perrotta, A.; Leising, G.; Coclite, A.M. ZnO Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition: Material Properties Within and Outside the “Atomic Layer Deposition Window”. Phys. Status Solidi A-Appl. Mater. Sci. 2020, 217, 1900256. [Google Scholar] [CrossRef]
- Jang, W.; Jeon, H.; Kang, C.; Song, H.; Park, J.; Kim, H.; Seo, H.; Leskela, M.; Jeon, H. Temperature dependence of silicon nitride deposited by remote plasma atomic layer deposition. Phys. Status Solidi A-Appl. Mater. Sci. 2014, 211, 2166–2171. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Wang, Z.; Liu, Y.; Zhao, Z.; Xu, G.; Han, T.-H.; Lee, J.-W.; Chen, C.; Bao, D.; et al. Hermetic seal for perovskite solar cells: An improved plasma enhanced atomic layer deposition encapsulation. Nano Energy 2020, 69, 104375. [Google Scholar] [CrossRef]
- Jen, S.-H.; Bertrand, J.A.; George, S.M. Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J. Appl. Phys. 2011, 109, 084305. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Lee, K.-T.; Huang, W.-K.; Siao, H.-Y.; Chang, Y.-C. High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition. Chem. Mater. 2015, 27, 5122–5130. [Google Scholar] [CrossRef]
- Kwon, J.H.; Jeong, E.G.; Jeon, Y.; Kim, D.-G.; Lee, S.; Choi, K.C. Design of highly water resistant, impermeable, and flexible thin-film encapsulation based on inorganic/organic hybrid layers. Acs Appl. Mater. Interfaces 2018, 11, 3251–3261. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Y.; Cao, W.; Zhu, Q.; Lin, Y.; Zhang, Y.; Liu, M.; Yang, F.; Cao, K.; Chen, R. Flexible PDMS/Al2O3 nanolaminates for the encapsulation of blue OLEDs. Adv. Mater. Interfaces 2021, 8, 2100872. [Google Scholar] [CrossRef]
- Casillas, G.; Mayoral, A.; Liu, M.; Ponce, A.; Artyukhov, V.I.; Yakobson, B.I.; Jose-Yacaman, M. New insights into the properties and interactions of carbon chains as revealed by HRTEM and DFT analysis. Carbon 2014, 66, 436–441. [Google Scholar] [CrossRef]
- Shugurov, A.R.; Panin, A.V. Mechanisms of stress generation and relaxation in thin films and coatings. In Proceedings of the International Conference on Physical Mesomechanics of Multilevel Systems 2014, Tomsk, Russia, 3–5 September 2014; pp. 575–578. [Google Scholar]
- Li, Y.-S.; Tsai, C.-H.; Kao, S.-H.; Wu, I.W.; Chen, J.-Z.; Wu, C.-I.; Lin, C.-F.; Cheng, I.C. Single-layer organic-inorganic-hybrid thin-film encapsulation for organic solar cells. J. Phys. D-Appl. Phys. 2013, 46, 435502. [Google Scholar] [CrossRef]
- Kim, S.J.; Yong, S.H.; Choi, Y.J.; Hwangbo, H.; Yang, W.-Y.; Chae, H. Flexible Al2O3/plasma polymer multilayer moisture barrier films deposited by a spatial atomic layer deposition process. J. Vac. Sci. Technol. A 2020, 38, 022418. [Google Scholar] [CrossRef]
- Keum, C.; Murawski, C.; Archer, E.; Kwon, S.; Mischok, A.; Gather, M.C. A substrateless, flexible, and water-resistant organic light-emitting diode. Nat. Commun. 2020, 11, 6250. [Google Scholar] [CrossRef]
- Kwon, B.-H.; Joo, C.W.; Cho, H.; Kang, C.-M.; Yang, J.-H.; Shin, J.-W.; Kim, G.H.; Choi, S.; Nam, S.; Kim, K. Organic/Inorganic Hybrid Thin-Film Encapsulation Using Inkjet Printing and PEALD for Industrial Large-Area Process Suitability and Flexible OLED Application. Acs Appl. Mater. Interfaces 2021, 13, 55391–55402. [Google Scholar] [CrossRef]
- Nam, T.; Park, Y.J.; Lee, H.; Oh, I.-K.; Ahn, J.-H.; Cho, S.M.; Kim, H. A composite layer of atomic-layer-deposited Al2O3 and graphene for flexible moisture barrier. Carbon 2017, 116, 553–561. [Google Scholar] [CrossRef]
- Jen, S.-H.; Lee, B.H.; George, S.M.; McLean, R.S.; Carcia, P.F. Critical tensile strain and water vapor transmission rate for nanolaminate films grown using Al2O3 atomic layer deposition and alucone molecular layer deposition. Appl. Phys. Lett. 2012, 101, 234103. [Google Scholar] [CrossRef]
- Chen, G.; Weng, Y.; Sun, F.; Zhou, X.; Wu, C.; Yan, Q.; Guo, T.; Zhang, Y. Low-temperature atomic layer deposition of Al2O3/alucone nanolaminates for OLED encapsulation. RSC Adv. 2019, 9, 20884–20891. [Google Scholar] [CrossRef]
- Chen, T.; Wuu, D.; Wu, C.; Chiang, C.; Chen, Y.; Horng, R.-H. High-performance transparent barrier films of SiOx/SiNx stacks on flexible polymer substrates. J. Electrochem. Soc. 2006, 153, F244. [Google Scholar] [CrossRef]
- Leterrier, Y. Durability of nanosized oxygen-barrier coatings on polymers. Prog. Mater. Sci. 2003, 48, 1–55. [Google Scholar] [CrossRef]
- Lewis, J.S.; Weaver, M.S. Thin-film permeation-barrier technology for flexible organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 2004, 10, 45–57. [Google Scholar] [CrossRef]
- Choi, Y.J.; Yong, S.H.; Kim, S.J.; Hwangbo, H.; Cho, S.M.; Pu, L.S.; Chae, H. Hygroscopic interlayers for multilayer Al2O3 barrier films. Thin Solid Film. 2019, 690, 137524. [Google Scholar] [CrossRef]
- Jeong, E.G.; Kwon, S.; Han, J.H.; Im, H.-G.; Bae, B.-S.; Choi, K.C. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs. Nanoscale 2017, 9, 6370–6379. [Google Scholar] [CrossRef]
- Yong, S.H.; Kim, S.J.; Park, J.S.; Cho, S.M.; Ahn, H.J.; Chae, H. Flexible Carbon-rich Al2O3 Interlayers for Moisture Barrier Films by a Spatially-Resolved Atomic Layer Deposition Process. J. Korean Phys. Soc. 2018, 73, 40–44. [Google Scholar] [CrossRef]
- Park, J.S.; Yong, S.H.; Choi, Y.J.; Chae, H. Residual stress analysis and control of multilayer flexible moisture barrier films with SiNx and Al2O3 layers. AIP Adv. 2018, 8, 085101. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, J.G.; Kim, S.S. Self-assembled monolayers as a defect sealant of Al2O3 barrier layers grown by atomic layer deposition. Org. Electron. 2018, 52, 98–102. [Google Scholar] [CrossRef]
- Seo, S.-W.; Jung, E.; Seo, S.J.; Chae, H.; Chung, H.K.; Cho, S.M. Toward fully flexible multilayer moisture-barriers for organic light-emitting diodes. J. Appl. Phys. 2013, 114, 14. [Google Scholar] [CrossRef]
- Han, Y.C.; Jeong, E.G.; Kim, H.; Kwon, S.; Im, H.-G.; Bae, B.-S.; Choi, K.C. Reliable thin-film encapsulation of flexible OLEDs and enhancing their bending characteristics through mechanical analysis. RSC Adv. 2016, 6, 40835–40843. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Wang, J.; Shangguan, L.; Fan, S.; Duan, Y. Realization of an autonomously controllable process for atomic layer deposition and its encapsulation application in flexible organic light-emitting diodes. Org. Express 2023, 13, 21672–21688. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wang, J.; Li, Z.; Chen, Z.; Shangguan, L.; Fan, S.; Duan, Y. Crosslinking and densification by plasma-enhanced molecular layer deposition for hermetic seal of flexible perovskite solar cells. Nano Energy 2023, 109, 108232. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.; Lin, J.; Shen, Y.; Wang, M.; Duan, Y. Optimizing the gradient stress sandwich structure thin-film encapsulation for super flexible organic light-emitting devices. Appl. Phys. Lett. 2023, 123, 083506. [Google Scholar] [CrossRef]
- Buchwalder, S.; Bourgeois, F.; Leon, J.J.; Hogg, A.; Burger, J. Parylene-AlOx Stacks for Improved 3D Encapsulation Solutions. Coatings 2023, 13, 1942. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Shim, H.R.; Na, Y.; Kang, K.S.; Jeon, Y.; Choi, S.; Jeong, E.G.; Park, Y.C.; Cho, H.E.; Lee, J.W.; et al. Foldable and washable textile-based OLEDs with a multi-functional near-room-temperature encapsulation layer for smart e-textiles. NPJ Flex. Electron. 2012, 5, 15. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Wang, Z.; Wang, J.; Chen, X. Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition. Micromachines 2024, 15, 478. https://doi.org/10.3390/mi15040478
Zhang B, Wang Z, Wang J, Chen X. Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition. Micromachines. 2024; 15(4):478. https://doi.org/10.3390/mi15040478
Chicago/Turabian StyleZhang, Buyue, Zhenyu Wang, Jintao Wang, and Xinyu Chen. 2024. "Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition" Micromachines 15, no. 4: 478. https://doi.org/10.3390/mi15040478
APA StyleZhang, B., Wang, Z., Wang, J., & Chen, X. (2024). Recent Achievements for Flexible Encapsulation Films Based on Atomic/Molecular Layer Deposition. Micromachines, 15(4), 478. https://doi.org/10.3390/mi15040478