Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO3 Thin Film
Abstract
:1. Introduction
2. Design and Analysis
2.1. Excitement of SH0 Mode in LiNbO3
2.2. Suppression of High-Order SH0 Spurious Mode
2.2.1. The Number of Electrodes (N)
2.2.2. The Pitch of Electrodes (Wp)
2.2.3. The Lengths of Electrodes (L)
3. Fabrication and Measurement Results
3.1. Fabrication Process
3.2. Measured Results and Discussion
3.2.1. Measurement Analysis of N and L
3.2.2. Measurement Analysis of Wp
3.2.3. Measurement Analysis of Electrode Coverage (We/Wp)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.-H.; Lu, R.; Gong, S. Analysis and removal of spurious response in SH0 lithium niobate MEMS resonators. IEEE Trans. Electron Devices 2016, 63, 2066–2073. [Google Scholar] [CrossRef]
- Okazaki, H.; Fukuda, A.; Kawai, K.; Furuta, T.; Narahashi, S. Mems-based reconfigurable rf front-end architecture for future band-free mobile terminals. In Proceedings of the 2007 European Microwave Conference, Munich, Germany, 9–12 October 2007; pp. 1058–1061. [Google Scholar]
- Faizan, M.; Villanueva, L.G. Frequency-scalable fabrication process flow for lithium niobate based Lamb wave resonators. J. Micromech. Microeng. 2019, 30, 015008. [Google Scholar] [CrossRef]
- Nguyen, C.T.-C. MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE Commun. Mag. 2013, 51, 110–119. [Google Scholar]
- Stolt, E.; Braun, W.D.; Gu, L.; Segovia-Fernandez, J.; Chakraborty, S.; Lu, R.; Rivas-Davila, J. Fixed-frequency control of piezoelectric resonator dc-dc converters for spurious mode avoidance. IEEE Open J. Power Electron. 2021, 2, 582–590. [Google Scholar] [CrossRef]
- Braun, W.D.; Stolt, E.A.; Gu, L.; Segovia-Fernandez, J.; Chakraborty, S.; Lu, R.; Rivas-Davila, J.M. Optimized resonators for piezoelectric power conversion. IEEE Open J. Power Electron. 2021, 2, 212–224. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, R.; Gong, S. High Q Antisymmetric Mode Lithium Niobate MEMS Resonators with Spurious Mitigation. J. Microelectromech. Syst. 2020, 29, 135–143. [Google Scholar] [CrossRef]
- Piazza, G.; Stephanou, P.J.; Pisano, A.P. Piezoelectric aluminum nitride vibrating contour-mode MEMS resonators. J. Microelectromech. Syst. 2006, 15, 1406–1418. [Google Scholar] [CrossRef]
- Gong, Z.; Bruch, A.; Shen, M.; Guo, X.; Jung, H.; Fan, L.; Liu, X.; Zhang, L.; Wang, J.; Li, J. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 2018, 43, 4366–4369. [Google Scholar] [CrossRef]
- Bedair, S.; Pulskamp, J.; Polcawich, R.; Judy, D.; Gillon, A.; Bhave, S.; Morgan, B. Low loss micromachined lead zirconate titanate, contour mode resonator with 50 Ω termination. In Proceedings of the 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS), Paris, France, 29 January–2 February 2012; pp. 708–712. [Google Scholar]
- Suzuki, M.; Tagawa, N.; Yoshizawa, M.; Irie, T. Effects of flexural vibration and thickness vibration on receiving characteristics of a diaphragm-type PZT resonator. Jpn. J. Appl. Phys. 2020, 59, SKKE10. [Google Scholar] [CrossRef]
- Shao, S.; Luo, Z.; Wu, T. High figure-of-merit Lamb wave resonators based on Al0.7Sc0.3N thin film. IEEE Electron Device Lett. 2021, 42, 1378–1381. [Google Scholar]
- Shao, S.; Luo, Z.; Lu, Y.; Mazzalai, A.; Tosi, C.; Wu, T. Low Loss Al 0.7Sc0.3N Thin Film Acoustic Delay Lines. IEEE Electron Device Lett. 2022, 43, 647–650. [Google Scholar] [CrossRef]
- Park, M.; Hao, Z.; Kim, D.G.; Clark, A.; Dargis, R.; Ansari, A. A 10 GHz single-crystalline scandium-doped aluminum nitride Lamb-wave resonator. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 450–453. [Google Scholar]
- Luo, Z.; Shao, S.; Wu, T. Al0.78Sc0.22N Lamb wave contour mode resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 69, 3108–3116. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Z.; Lu, Y.; Wu, T. LiNbO3 High Order Lamb Wave Resonators with Composite Plate Structure. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–4. [Google Scholar]
- Liu, Y.; Liu, K.; Wu, T. Design and Analysis of High kt2 Shear Horizontal Wave Resonators. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–4. [Google Scholar]
- Li, M.-H.; Chen, C.-Y.; Lu, R.; Yang, Y.; Wu, T.; Gong, S. Temperature stability analysis of thin-film lithium niobate SH0 plate wave resonators. J. Microelectromech. Syst. 2019, 28, 799–809. [Google Scholar] [CrossRef]
- Ruby, R.; Small, M.; Bi, F.; Lee, D.; Callaghan, L.; Parker, R.; Ortiz, S. Positioning FBAR technology in the frequency and timing domain. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 334–345. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Lin, C.-M.; Gao, A.; Pisano, A.P. The multi-mode resonance in AlN Lamb wave resonators. J. Microelectromech. Syst. 2018, 27, 973–984. [Google Scholar] [CrossRef]
- Zhao, X.; Kaya, O.; Pirro, M.; Assylbekova, M.; Colombo, L.; Simeoni, P.; Cassella, C. A 5.3 GHz Al0.76Sc0.24N Two-Dimensional Resonant Rods Resonator with a Record kt2 of 23.9%. arXiv 2022, arXiv:2202.11284. [Google Scholar]
- Akiyama, M.; Kamohara, T.; Kano, K.; Teshigahara, A.; Takeuchi, Y.; Kawahara, N. Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 2009, 21, 593–596. [Google Scholar] [CrossRef]
- Beaucejour, R.; Roebisch, V.; Kochhar, A.; Moe, C.G.; Hodge, M.D.; Olsson, R.H. Controlling Residual Stress and Suppression of Anomalous Grains in Aluminum Scandium Nitride Films Grown Directly on Silicon. J. Microelectromech. Syst. 2022, 31, 604–611. [Google Scholar] [CrossRef]
- Song, Y.-H.; Gong, S. Wideband spurious-free lithium niobate RF-MEMS filters. J. Microelectromech. Syst. 2017, 26, 820–828. [Google Scholar] [CrossRef]
- Gong, S.; Shi, L.; Piazza, G. High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film. In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012; pp. 1–3. [Google Scholar]
- Gong, S.; Piazza, G. Weighted electrode configuration for electromechanical coupling enhancement in a new class of micromachined lithium niobate laterally vibrating resonators. In Proceedings of the 2012 International Electron Devices Meeting, San Francisco, CA, USA, 10–13 December 2012; pp. 15.16.1–15.16.4. [Google Scholar]
- Wang, R.; Bhave, S.A.; Bhattacharjee, K. High k t 2× Q, multi-frequency lithium niobate resonators. In Proceedings of the 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 20–24 January 2013; pp. 165–168. [Google Scholar]
- Lu, R.; Yang, Y.; Link, S.; Gong, S. A1 resonators in 128° Y-cut lithium niobate with electromechanical coupling of 46.4%. J. Microelectromech. Syst. 2020, 29, 313–319. [Google Scholar] [CrossRef]
- Kimura, T.; Omura, M.; Kishimoto, Y.; Kyoya, H.; Mimura, M.; Okunaga, H.; Hashimoto, K.-Y. A high velocity and wideband SAW on a thin LiNbO3 plate bonded on a Si substrate in the SHF range. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1239–1248. [Google Scholar]
- Colombo, L.; Kochhar, A.; Vidal-Álvarez, G.; Piazza, G. X-cut lithium niobate laterally vibrating MEMS resonator with figure of merit of 1560. J. Microelectromech. Syst. 2018, 27, 602–604. [Google Scholar] [CrossRef]
- Song, Y.-H.; Gong, S. Elimination of spurious modes in SH0 lithium niobate laterally vibrating resonators. IEEE Electron Device Lett. 2015, 36, 1198–1201. [Google Scholar] [CrossRef]
- Song, Y.-H.; Gong, S. Arraying SH0 lithium niobate laterally vibrating resonators for mitigation of higher order spurious modes. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 111–114. [Google Scholar]
- Gao, A.; Zou, J. Extremely High Q AlN Lamb Wave Resonators Implemented by Weighted Electrodes. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 34.35.1–34.35.4. [Google Scholar]
- Yang, Y.; Gao, L.; Lu, R.; Gong, S. Lateral spurious mode suppression in lithium niobate A1 resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.-H.; Gong, S. Wideband RF filters using medium-scale integration of lithium niobate laterally vibrating resonators. IEEE Electron Device Lett. 2017, 38, 387–390. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Li, S.-S.; Li, M.-H.; Gao, A.; Lu, R.; Gong, S. Q-enhanced lithium niobate SH0 resonators with optimized acoustic boundaries. In Proceedings of the 2019 Joint Conference of the IEEE International Frequency Control Symposium and European Frequency and Time Forum (EFTF/IFC), Orlando, FL, USA, 14–18 April 2019; pp. 1–4. [Google Scholar]
- Lu, R.; Manzaneque, T.; Yang, Y.; Gong, S. Lithium niobate phononic crystals for tailoring performance of RF laterally vibrating devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 934–944. [Google Scholar] [CrossRef]
- Kadota, M.; Ishii, Y.; Tanaka, S. Ultra-wideband T-and π-type ladder filters using a fundamental shear horizontal mode plate wave in a LiNbO3 plate. Jpn. J. Appl. Phys. 2019, 58, SGGC10. [Google Scholar] [CrossRef]
- Lu, R.; Yang, Y.; Li, M.-H.; Manzaneque, T.; Gong, S. GHz broadband SH0 mode lithium niobate acoustic delay lines. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2019, 67, 402–412. [Google Scholar] [CrossRef]
- Li, M.-H.; Chen, C.-Y.; Lu, R.; Yang, Y.; Wu, T.; Gong, S. Power-efficient ovenized lithium niobate SH0 resonator arrays with passive temperature compensation. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 911–914. [Google Scholar]
- Kuznetsova, I.E.; Zaitsev, B.D.; Joshi, S.G.; Borodina, I.A. Investigation of acoustic waves in thin plates of lithium niobate and lithium tantalate. Ieee Trans. Ultrason. Ferroelectr. Freq. Control 2001, 48, 322–328. [Google Scholar] [CrossRef]
- Emad, A.; Lu, R.; Li, M.-H.; Yang, Y.; Wu, T.; Gong, S. Resonant Torsional Micro-Actuators Using Thin-Film Lithium Niobate. In Proceedings of the 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), Seoul, Republic of Korea, 27–31 January 2019; pp. 282–285. [Google Scholar]
- Lu, R.; Gong, S. RF acoustic microsystems based on suspended lithium niobate thin films: Advances and outlook. J. Micromech. Microeng. 2021, 31, 114001. [Google Scholar] [CrossRef]
- Wu, S.; Wu, Z.; Qian, H.; Bao, F.; Tang, G.; Xu, F.; Zou, J. High-performance SH-SAW resonator using optimized 30° YX-LiNbO3/SiO2/Si. Appl. Phys. Lett. 2022, 120, 242201. [Google Scholar] [CrossRef]
- Zou, J.; Liu, J.; Tang, G. Transverse Spurious Mode Compensation for AlN Lamb Wave Resonators. IEEE Access 2019, 7, 67059–67067. [Google Scholar] [CrossRef]
- Aigner, R. Bringing BAW Technology into Volume Production: The Ten commandments and the seven deadly sins. In Proceedings of the 3rd International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, Chiba, Japan, 6–8 March 2007. [Google Scholar]
- Rinaldi, M. Laterally Vibrating Piezoelectric MEMS Resonators. Piezoelectric MEMS Reson. 2017, 1, 175–202. [Google Scholar]
- Lu, R.; Li, M.H.; Yang, Y.; Manzaneque, T.; Gong, S. Accurate Extraction of Large Electromechanical Coupling in Piezoelectric MEMS Resonators. J. Microelectromech. Syst. 2019, 28, 209–218. [Google Scholar] [CrossRef]
- Song, Y.-H.; Gong, S. A 1.17 GHz wideband MEMS filter using higher order SH0 lithium niobate resonators. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 806–809. [Google Scholar]
- Chen, G.; Cassella, C.; Wu, T.; Rinaldi, M. Single-chip multi-frequency wideband filters based on aluminum nitride Cross-sectional Lamé mode resonators with thick and apodized electrodes. In Proceedings of the 31st IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018. [Google Scholar]
- Schrempel, F.; Gischkat, T.; Hartung, H.; Kley, E.-B.; Wesch, W. Ion beam enhanced etching of LiNbO3. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2006, 250, 164–168. [Google Scholar] [CrossRef]
- Koolen, M.; Geelen, J.; Versleijen, M. An improved de-embedding technique for on-wafer high-frequency characterization. In Proceedings of the Bipolar Circuits and Technology Meeting, Minneapolis, MN, USA, 9–10 September 1991; pp. 188–191. [Google Scholar]
- Bhugra, H.; Piazza, G. Piezoelectric MEMS Resonators; Springer International Publishing: Cham, Switzerland, 2017. [Google Scholar]
- Faizan, M.; Villanueva, L.G. Optimization of inactive regions of lithium niobate shear mode resonator for quality factor enhancement. J. Microelectromech. Syst. 2021, 30, 369–374. [Google Scholar] [CrossRef]
- Lu, R.; Manzaneque, T.; Yang, Y.; Gong, S. Exploiting parallelism in resonators for large voltage gain in low power wake up radio front ends. In Proceedings of the 2018 IEEE Micro Electro Mechanical Systems (MEMS), Belfast, UK, 21–25 January 2018; pp. 747–750. [Google Scholar]
- Kourani, A.; Gong, S. A Tunable Low-Power Oscillator Based on High-Q Lithium Niobate MEMS Resonators and 65-nm CMOS. IEEE Trans. Microw. Theory Tech. 2018, 66, 5708–5723. [Google Scholar] [CrossRef]
- Colombo, L.; Kochhar, A.; Vidal-Álvarez, G.; Piazza, G. Investigations on the quality factor of lithium niobate laterally vibrating resonators with figure of merit greater than 1500. In Proceedings of the 2018 IEEE International Ultrasonics Symposium (IUS), Kobe, Japan, 22–25 October 2018; pp. 1–4. [Google Scholar]
- Shi, L.; Piazza, G. Active reflectors for high performance lithium niobate on silicon dioxide resonators. In Proceedings of the 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, Portugal, 18–22 January 2015; pp. 992–995. [Google Scholar]
- Boujemaa, M.A.; Mabrouk, M.; Choubani, F. Non-Linear Characterization of A MEMS Bulk Acoustic Wave Filter. In Proceedings of the 14th edition of the Mediterranean Microwave Symposium, Marrakech, Morocco, 12–14 December 2014. [Google Scholar]
- Mabrouk, M.; Boujemaa, M.A.; Choubani, F. Flexible Engineering Tool for Radiofrequency Parameter Identification of RF-MEMS BAW Filters. ETRI J. 2016, 38, 988–995. [Google Scholar] [CrossRef]
- Kochhar, A.; Mahmoud, A.; Shen, Y.; Turumella, N.; Piazza, G. X-cut lithium niobate-based shear horizontal resonators for radio frequency applications. J. Microelectromech. Syst. 2020, 29, 1464–1472. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Liu, K.; Li, J.; Li, Y.; Wu, T. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO3 Thin Film. Micromachines 2024, 15, 477. https://doi.org/10.3390/mi15040477
Liu Y, Liu K, Li J, Li Y, Wu T. Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO3 Thin Film. Micromachines. 2024; 15(4):477. https://doi.org/10.3390/mi15040477
Chicago/Turabian StyleLiu, Yushuai, Kangfu Liu, Jiawei Li, Yang Li, and Tao Wu. 2024. "Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO3 Thin Film" Micromachines 15, no. 4: 477. https://doi.org/10.3390/mi15040477
APA StyleLiu, Y., Liu, K., Li, J., Li, Y., & Wu, T. (2024). Spurious-Free Shear Horizontal Wave Resonators Based on 36Y-Cut LiNbO3 Thin Film. Micromachines, 15(4), 477. https://doi.org/10.3390/mi15040477