Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter
Abstract
:1. Introduction
2. Design and Fabrication
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, K.; He, C.; Fang, J.; Cui, X.; Sun, H.; Yang, Y.; Zuo, C. Advanced RF filters for wireless communications. Chip 2023, 2, 100058. [Google Scholar] [CrossRef]
- Lv, L.; Shuai, Y.; Luo, W.; Wu, C.; Zhang, W. Simulation of Wide Band BAW Filter for N78 Application. J. Phys. Conf. Ser. 2022, 2173, 012014. [Google Scholar] [CrossRef]
- Chauhan, V.; Huck, C.; Frank, A.; Akstaller, W.; Weigel, R.; Hagelauer, A. Enhancing RF bulk acoustic wave devices: Multiphysical modeling and performance. IEEE Microw. Mag. 2019, 20, 56–70. [Google Scholar] [CrossRef]
- Ruby, R.C.; Bradley, P.; Oshmyansky, Y.; Chien, A.; Larson, J.D. Thin film bulk wave acoustic resonators (FBAR) for wireless applications. In Proceedings of the 2001 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 01CH37263), Atlanta, GA, USA, 7–10 October 2001. [Google Scholar]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Wada, T.; Hiramoto, M.; Koshino, M.; Nakajima, N. Investigations on design technologies for SAW quadplexer with narrow duplex gap. In Proceedings of the 2016 IEEE Mtt-S International Microwave Symposium (IMS), San Francisco, CA, USA, 22–27 May 2016; pp. 1–4. [Google Scholar]
- Dubois, M.A.; Billard, C.; Muller, C.; Parat, G.; Vincent, P. Integration of high-Q BAW resonators and filters above IC. In Proceedings of the ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, San Francisco, CA, USA, 10 February 2005; pp. 392–606. [Google Scholar]
- Liu, Y.; Cai, Y.; Zhang, Y.; Tovstopyat, A.; Liu, S.; Sun, C. Materials, design, and characteristics of bulk acoustic wave resonator: A review. Micromachines 2020, 11, 630. [Google Scholar] [CrossRef] [PubMed]
- Ou, Y.C.; Rebeiz, G.M. Lumped-element fully tunable bandstop filters for cognitive radio applications. IEEE Trans. Microw. Theory Tech. 2011, 59, 2461–2468. [Google Scholar] [CrossRef]
- Nishihara, T.; Yokoyama, T.; Miyashita, T.; Satoh, Y. High performance and miniature thin film bulk acoustic wave filters for 5 GHz. In Proceedings of the 2002 IEEE Ultrasonics Symposium, 2002. Proceedings, Munich, Germany, 8–11 October 2002; Volume 1, pp. 969–972. [Google Scholar]
- Ruppel, C.C. Acoustic wave filter technology—A review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2017, 64, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Aigner, R. SAW and BAW technologies for RF filter applications: A review of the relative strengths and weaknesses. In Proceedings of the 2008 IEEE Ultrasonics Symposium, Beijing, China, 2–5 November 2008; pp. 582–589. [Google Scholar]
- Wang, N.; Zhu, Y.; Chua, G.L.; Chen, B.; Merugu, S.; Singh, N.; Gu, Y. Over 10% Keff2 of demonstrated by 2-GHz spurious mode-free Sc0.12Al0.88N laterally coupled alternating thickness mode resonators. IEEE Electron Device Lett. 2019, 40, 957–960. [Google Scholar] [CrossRef]
- Wong, Y.P.; He, Y.; Matsuoka, N.; Liang, Q.; Bao, J.; Hashimoto, K.Y. IHP SAW transverse edge design for energy confinement with suppressed scattering loss and transverse mode. In Proceedings of the 2021 IEEE International Ultrasonics Symposium (IUS), Xi’an, China, 11–16 September 2021; pp. 1–4. [Google Scholar]
- Takai, T.; Iwamoto, H.; Takamine, Y.; Fuyutsume, T.; Nakao, T.; Hiramoto, M.; Toi, T.; Koshino, M. IHP SAW technology and its application to microacoustic components. In Proceedings of the 2017 IEEE International Ultrasonics Symposium (IUS), Washington, DC, USA, 6–9 September 2017; pp. 1–8. [Google Scholar]
- Takamine, Y.; Takai, T.; Iwamoto, H.; Nakao, T.; Koshino, M. A novel 3.5 GHz low-loss bandpass filter using IHP SAW resonators. In Proceedings of the 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan, 6–9 November 2018; pp. 1342–1344. [Google Scholar]
- Nguyen, N.; Johannessen, A.; Rooth, S.; Hanke, U. A Design Approach for High-Q FBARs with a Dual Step Frame. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2018, 65, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Y.; Xu, Q.; Xie, Y.; Cai, Y.; Liu, J.; Liu, W.; Tovstopyat, A.; Sun, C. ScAlN/AlN film-based Lamé mode resonator with high effective electromechanical coupling coefficient. J. Microelectromech. Syst. 2021, 30, 677–679. [Google Scholar] [CrossRef]
- Mandal, D.; Banerjee, S. Surface acoustic wave (SAW) sensors: Physics, materials, and applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef]
- Lam, C.S. A review of the timing and filtering technologies in smartphones. In Proceedings of the 2016 IEEE International Frequency Control Symposium (IFCS), New Orleans, LA, USA, 9–12 May 2016; pp. 1–6. [Google Scholar]
- Li, M.; Xie, J.; Chen, B.; Wang, N.; Zhu, Y. Microstructural evolution of the abnormal crystallite grains in sputtered ScAlN film for piezo-MEMS applications. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Glasgow, UK, 6–9 October 2019; pp. 1124–1126. [Google Scholar]
- Nam, S.; Peng, W.; Wang, P.; Wang, D.; Mi, Z.; Mortazawi, A. An mm-wave trilayer AlN/ScAlN/AlN higher order mode FBAR. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 803–806. [Google Scholar] [CrossRef]
- Ambacher, O.; Christian, B.; Feil, N.; Urban, D.F.; Elsässer, C.; Prescher, M.; Kirste, L. Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J. Appl. Phys. 2021, 130, 045102. [Google Scholar] [CrossRef]
- Gao, C.; Cai, Y.; Zou, Y.; Lin, B.; Yang, T.; Wang, Y.; Liu, Y.; Guo, S.; Sun, C. Investigation of thermal annealing on the characteristics of ScxAl1− XN thin films. Vacuum 2024, 219, 112669. [Google Scholar] [CrossRef]
- Li, M.; Chen, B.; Xie, J.; Song, W.; Zhu, Y. Effects of post-annealing on texture evolution of sputtered ScAlN films. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–3. [Google Scholar]
- Zou, Y.; Gao, C.; Zhou, J.; Liu, Y.; Xu, Q.; Qu, Y.; Liu, W.; Soon, J.B.W.; Cai, Y.; Sun, C. Aluminum scandium nitride thin-film bulk acoustic resonators for 5G wideband applications. Microsyst. Nanoeng. 2022, 8, 124. [Google Scholar] [CrossRef] [PubMed]
- Giribaldi, G.; Simeoni, P.; Colombo, L.; Rinaldi, M. High-Crystallinity 30% Scaln Enabling High Figure of Merit X-Band Microacoustic Resonators for Mid-Band 6G. In Proceedings of the 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), Munich, Germany, 15–19 January 2023; pp. 169–172. [Google Scholar]
- Moreira, M.; Bjurström, J.; Katardjev, I.; Yantchev, V. Aluminum scandium nitride thin-film bulk acoustic resonators for wide band applications. Vacuum 2011, 86, 23–26. [Google Scholar] [CrossRef]
- Ding, R.; Xuan, W.; Dong, S.; Zhang, B.; Gao, F.; Liu, G.; Zhang, Z.; Jin, H.; Luo, J. The 3.4 GHz BAW RF filter based on single crystal AlN resonator for 5G application. Nanomaterials 2022, 12, 3082. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Xu, Y.; Wu, Y.; Wang, W.; Lai, Z. A 3.4–3.6 GHz high-selectivity filter chip based on film bulk acoustic resonator technology. Electronics 2023, 12, 1056. [Google Scholar] [CrossRef]
- Iwata, N.; Kinoshita, S.; Yanagitani, T. Extracting mechanical Q factor of the pure AlN, ScAlN, and ZnO films without etching substrate. In Proceedings of the 2020 IEEE International Ultrasonics Symposium (IUS), Las Vegas, NV, USA, 7–11 September 2020; pp. 1–2. [Google Scholar]
- Jamneala, T.; Bradley, P.; Koelle, U.B.; Chien, A. Modified Mason model for bulk acoustic wave resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2008, 55, 2025–2029. [Google Scholar] [CrossRef]
- Xu, L.; Wu, X.; Zeng, Y. Simulation and research of piezoelectric film bulk acoustic resonator based on mason model. In Proceedings of the 2021 6th International Conference on Integrated Circuits and Microsystems (ICICM), Nanjing, China, 22–24 October 2021; pp. 184–188. [Google Scholar]
- Bi, F.Z.; Barber, B.P. Bulk acoustic wave RF technology. IEEE Microw. Mag. 2008, 9, 65–80. [Google Scholar] [CrossRef]
- Fattinger, G.G.; Marksteiner, S.; Kaitila, J.; Aigner, R. Optimization of acoustic dispersion for high performance thin film BAW resonators. IEEE Ultrason. Symp. 2005, 2, 1175–1178. [Google Scholar]
- Zou, Y.; Cai, Y.; Gao, C.; Luo, T.; Liu, Y.; Xu, Q.; Wang, Y.; Nian, L.; Liu, W.; Soon, J.B.W.; et al. Design, fabrication, and characterization of aluminum scandium nitride-based thin film bulk acoustic wave filter. J. Microelectromech. Syst. 2023, 32, 263–270. [Google Scholar] [CrossRef]
- Sung, P.H.; Fang, C.M.; Chang, P.Z.; Chin, Y.C.; Chen, P.Y. The method for integrating FBAR with circuitry on CMOS chip. In Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition, Montreal, QC, Canada, 23–27 August 2004; pp. 562–565. [Google Scholar]
- Gao, Y.; Wen, S.W.; Han, C.; Zhang, D.P. A method determining order of BAW ladder-type filter. In Proceedings of the Emerging Imaging and Sensing Technologies for Security and Defence III; and Unmanned Sensors, Systems, and Countermeasures, Berlin, Germany, 4 October 2018; Volume 10799, pp. 112–118. [Google Scholar]
- Bhadauria, A.; Panchal, B.; Varghese, S. RF bandpass filters using FBAR with fractal electrodes. In Proceedings of the 2018 IEEE MTT-S International Microwave and RF Conference (IMaRC), Kolkata, India, 28–30 November 2018; pp. 1–3. [Google Scholar]
Layer | Thickness (nm) |
---|---|
Mo TE | 100 |
Mo massloading | 18 |
Sc0.2Al0.8N | 700 |
Mo BE | 150 |
AlN seed | 25 |
Cavity | 2000 |
Resonator | C0 (pF) | fs (GHz) | fp (GHz) | Qs | Qp | (%) |
---|---|---|---|---|---|---|
Series | 1.14 | 3.390 | 3.586 | 99 | 193 | 13.1% |
Parallel | 1.41 | 3.161 | 3.351 | 102 | 229 | 13.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zheng, Y.; Xu, Q.; Qu, Y.; Ren, Y.; Huang, X.; Gao, C.; Liu, Y.; Guo, S.; Cai, Y.; et al. Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter. Micromachines 2024, 15, 563. https://doi.org/10.3390/mi15050563
Zhou Y, Zheng Y, Xu Q, Qu Y, Ren Y, Huang X, Gao C, Liu Y, Guo S, Cai Y, et al. Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter. Micromachines. 2024; 15(5):563. https://doi.org/10.3390/mi15050563
Chicago/Turabian StyleZhou, Yu, Yupeng Zheng, Qinwen Xu, Yuanhang Qu, Yuqi Ren, Xiaoming Huang, Chao Gao, Yan Liu, Shishang Guo, Yao Cai, and et al. 2024. "Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter" Micromachines 15, no. 5: 563. https://doi.org/10.3390/mi15050563
APA StyleZhou, Y., Zheng, Y., Xu, Q., Qu, Y., Ren, Y., Huang, X., Gao, C., Liu, Y., Guo, S., Cai, Y., & Sun, C. (2024). Design and Fabrication of 3.5 GHz Band-Pass Film Bulk Acoustic Resonator Filter. Micromachines, 15(5), 563. https://doi.org/10.3390/mi15050563