Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications
Abstract
:1. Introduction
2. The Pre-Clinical Translation and Quantification Capabilities of SV-OCT for Biological Tissue Assessment
3. SV-OCT in Therapeutic Assessments of Various Medical Treatments
4. Concluding Remarks, Future Trends, and Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, D.; Swanson, E.A.; Lin, C.P.; Schuman, J.S.; Stinson, W.G.; Chang, W.; Hee, M.R.; Flotte, T.; Gregory, K.; Puliafito, C.A. Optical Coherence Tomography. Science 1991, 254, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Fercher, A.F.; Drexler, W.; Hitzenberger, C.K.; Lasser, T. Optical Coherence Tomography-Principles and Applications. Rep. Prog. Phys. 2003, 66, 239. [Google Scholar] [CrossRef]
- Christopoulos, V.; Kagemann, L.; Wollstein, G.; Ishikawa, H.; Gabriele, M.L.; Wojtkowski, M.; Srinivasan, V.; Fujimoto, J.G.; Duker, J.S.; Dhaliwal, D.K. In Vivo Corneal High-Speed, Ultra–High-Resolution Optical Coherence Tomography. Arch. Ophthalmol. 2007, 125, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Ren, H.; Zhao, Y.; Nelson, J.S.; Chen, Z. High-Resolution Optical Coherence Tomography over a Large Depth Range with an Axicon Lens. Opt. Lett. 2002, 27, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Adhi, M.; Brewer, E.; Waheed, N.K.; Duker, J.S. Analysis of Morphological Features and Vascular Layers of Choroid in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography. JAMA Ophthalmol. 2013, 131, 1267–1274. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, J.G.; Pitris, C.; Boppart, S.A.; Brezinski, M.E. Optical Coherence Tomography: An Emerging Technology for Biomedical Imaging and Optical Biopsy. Neoplasia 2000, 2, 9. [Google Scholar] [CrossRef] [PubMed]
- Abdhul Rahuman, M.A.; Kahatapitiya, N.S.; Amarakoon, V.N.; Wijenayake, U.; Silva, B.N.; Jeon, M.; Kim, J.; Ravichandran, N.K.; Wijesinghe, R.E. Recent Technological Progress of Fiber-Optical Sensors for Bio-Mechatronics Applications. Technologies 2023, 11, 157. [Google Scholar] [CrossRef]
- De Boer, J.F.; Cense, B.; Park, B.H.; Pierce, M.C.; Tearney, G.J.; Bouma, B.E. Improved Signal-to-Noise Ratio in Spectral-Domain Compared with Time-Domain Optical Coherence Tomography. Opt. Lett. 2003, 28, 2067–2069. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.F.; Leitgeb, R.; Wojtkowski, M. Twenty-Five Years of Optical Coherence Tomography: The Paradigm Shift in Sensitivity and Speed Provided by Fourier Domain OCT [Invited]. Biomed. Opt. Express 2017, 8, 3248–3280. [Google Scholar] [CrossRef]
- Xi, J.; Huo, L.; Li, J.; Li, X. Generic Real-Time Uniform K-Space Sampling Method for High-Speed Swept-Source Optical Coherence Tomography. Opt. Express 2010, 18, 9511–9517. [Google Scholar] [CrossRef]
- Zhou, Y.; Chan, K.K.; Lai, T.; Tang, S. Characterizing Refractive Index and Thickness of Biological Tissues Using Combined Multiphoton Microscopy and Optical Coherence Tomography. Biomed. Opt. Express 2013, 4, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Stritzel, J.; Rahlves, M.; Roth, B. Refractive-Index Measurement and Inverse Correction Using Optical Coherence Tomography. Opt. Lett. 2015, 40, 5558–5561. [Google Scholar] [CrossRef] [PubMed]
- Cang, H.; Sun, T.; Li, Z.-Y.; Chen, J.; Wiley, B.J.; Xia, Y.; Li, X. Gold Nanocages as Contrast Agents for Spectroscopic Optical Coherence Tomography. Opt. Lett. 2005, 30, 3048–3050. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Feldman, M.D.; Kim, J.; Kang, H.W.; Sanghi, P.; Milner, T.E. Magneto-Motive Detection of Tissue-Based Macrophages by Differential Phase Optical Coherence Tomography. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2007, 39, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Hendargo, H.C.; Estrada, R.; Chiu, S.J.; Tomasi, C.; Farsiu, S.; Izatt, J.A. Automated Non-Rigid Registration and Mosaicing for Robust Imaging of Distinct Retinal Capillary Beds Using Speckle Variance Optical Coherence Tomography. Biomed. Opt. Express 2013, 4, 803–821. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.F.; Milner, T.E.; Van Gemert, M.J.; Nelson, J.S. Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography. Opt. Lett. 1997, 22, 934–936. [Google Scholar] [CrossRef] [PubMed]
- De Boer, J.F.; Srinivas, S.M.; Malekafzali, A.; Chen, Z.; Nelson, J.S. Imaging Thermally Damaged Tissue by Polarization Sensitive Optical Coherence Tomography. Opt. Express 1998, 3, 212–218. [Google Scholar] [CrossRef]
- Barton, J.K.; Stromski, S. Flow Measurement without Phase Information in Optical Coherence Tomography Images. Opt. Express 2005, 13, 5234–5239. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, Q.; Thorell, M.R.; An, L.; Durbin, M.K.; Laron, M.; Sharma, U.; Gregori, G.; Rosenfeld, P.J.; Wang, R.K. Swept-Source OCT Angiography of the Retinal Vasculature Using Intensity Differentiation-Based Optical Microangiography Algorithms. Ophthalmic Surg. Lasers Imaging Retin. 2014, 45, 382–389. [Google Scholar] [CrossRef]
- Mariampillai, A.; Standish, B.A.; Moriyama, E.H.; Khurana, M.; Munce, N.R.; Leung, M.K.; Jiang, J.; Cable, A.; Wilson, B.C.; Vitkin, I.A. Speckle Variance Detection of Microvasculature Using Swept-Source Optical Coherence Tomography. Opt. Lett. 2008, 33, 1530–1532. [Google Scholar] [CrossRef]
- Chen, D.; Yuan, W.; Park, H.-C.; Li, X. In Vivo Assessment of Vascular-Targeted Photodynamic Therapy Effects on Tumor Microvasculature Using Ultrahigh-Resolution Functional Optical Coherence Tomography. Biomed. Opt. Express 2020, 11, 4316–4325. [Google Scholar] [CrossRef] [PubMed]
- Cadotte, D.W.; Mariampillai, A.; Cadotte, A.; Lee, K.K.; Kiehl, T.-R.; Wilson, B.C.; Fehlings, M.G.; Yang, V.X. Speckle Variance Optical Coherence Tomography of the Rodent Spinal Cord: In Vivo Feasibility. Biomed. Opt. Express 2012, 3, 911–919. [Google Scholar] [CrossRef]
- Tsai, M.-T.; Chang, F.-Y.; Lee, C.-K.; Gong, C.-S.A.; Lin, Y.-X.; Lee, J.-D.; Yang, C.-H.; Liu, H.-L. Investigation of Temporal Vascular Effects Induced by Focused Ultrasound Treatment with Speckle-Variance Optical Coherence Tomography. Biomed. Opt. Express 2014, 5, 2009–2022. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.K.; Mariampillai, A.; Joe, X.Z.; Cadotte, D.W.; Wilson, B.C.; Standish, B.A.; Yang, V.X. Real-Time Speckle Variance Swept-Source Optical Coherence Tomography Using a Graphics Processing Unit. Biomed. Opt. Express 2012, 3, 1557–1564. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.M.; Xiang, S.H.; Yung, K.M. Speckle in Optical Coherence Tomography. J. Biomed. Opt. 1999, 4, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, S.; Balaratnasingam, C.; Mammo, Z.; Wong, K.S.; Lee, S.; Cua, M.; Young, M.; Kirker, A.; Albiani, D. Retinal Angiography with Real-Time Speckle Variance Optical Coherence Tomography. Br. J. Ophthalmol. 2015, 99, 1315–1319. [Google Scholar] [CrossRef] [PubMed]
- Aiyagari, R.; Cooper, D.S.; Jacobs, J.P. Vascular Access in Children with Congenital Heart Defects. Pediatrics 2020, 145, S294–S295. [Google Scholar] [CrossRef] [PubMed]
- Rassaf, T.; Totzeck, M.; Backs, J.; Bokemeyer, C.; Hallek, M.; Hilfiker-Kleiner, D.; Hochhaus, A.; Lüftner, D.; Müller, O.J.; Neudorf, U. Onco-Cardiology: Consensus Paper of the German Cardiac Society, the German Society for Pediatric Cardiology and Congenital Heart Defects and the German Society for Hematology and Medical Oncology. Clin. Res. Cardiol. 2020, 109, 1197–1222. [Google Scholar] [CrossRef] [PubMed]
- Newfeld, E.A.; Paul, M.H.; Muster, A.J.; Idriss, F.S. Pulmonary Vascular Disease in Complete Transposition of the Great Arteries: A Study of 200 Patients. Am. J. Cardiol. 1974, 34, 75–82. [Google Scholar] [CrossRef]
- Sudheendran, N.; Syed, S.H.; Dickinson, M.E.; Larina, I.V.; Larin, K.V. Speckle Variance OCT Imaging of the Vasculature in Live Mammalian Embryos. Laser Phys. Lett. 2011, 8, 247. [Google Scholar] [CrossRef]
- Curtis, M.W.; Russell, B. Micromechanical Regulation in Cardiac Myocytes and Fibroblasts: Implications for Tissue Remodeling. Pflug. Arch. Eur. J. Physiol. 2011, 462, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Leinwand, L.A.; Anseth, K.S. Cardiac Valve Cells and Their Microenvironment—Insights from in Vitro Studies. Nat. Rev. Cardiol. 2014, 11, 715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, X.; Nie, G. Responsive and Activable Nanomedicines for Remodeling the Tumor Microenvironment. Nat. Protoc. 2021, 16, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.G.; Cooney, E.M.; Kandel, J.J.; Yamashiro, D.J. Vascular Remodeling and Clinical Resistance to Antiangiogenic Cancer Therapy. Drug Resist. Updates 2004, 7, 289–300. [Google Scholar]
- Zwick, S.; Strecker, R.; Kiselev, V.; Gall, P.; Huppert, J.; Palmowski, M.; Lederle, W.; Woenne, E.C.; Hengerer, A.; Taupitz, M. Assessment of Vascular Remodeling under Antiangiogenic Therapy Using DCE-MRI and Vessel Size Imaging. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 2009, 29, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Pituskin, E.; Haykowsky, M.; Mackey, J.R.; Thompson, R.B.; Ezekowitz, J.; Koshman, S.; Oudit, G.; Chow, K.; Pagano, J.J.; Paterson, I. Rationale and Design of the Multidisciplinary Approach to Novel Therapies in Cardiology Oncology Research Trial (MANTICORE 101-Breast): A Randomized, Placebo-Controlled Trial to Determine If Conventional Heart Failure Pharmacotherapy Can Prevent Trastuzumab-Mediated Left Ventricular Remodeling among Patients with HER2+ Early Breast Cancer Using Cardiac MRI. BMC Cancer 2011, 11, 318. [Google Scholar]
- Wu, M.-T.; Tseng, W.-Y.; Su, M.-Y.; Liu, C.-P.; Chiou, K.-R.; Wedeen, V.J.; Reese, T.G.; Yang, C.-F. Diffusion Tensor Magnetic Resonance Imaging Mapping the Fiber Architecture Remodeling in Human Myocardium after Infarction: Correlation with Viability and Wall Motion. Circulation 2006, 114, 1036–1045. [Google Scholar] [CrossRef] [PubMed]
- Lafage-Proust, M.-H.; Roche, B.; Langer, M.; Cleret, D.; Bossche, A.V.; Olivier, T.; Vico, L. Assessment of Bone Vascularization and Its Role in Bone Remodeling. BoneKEy Rep. 2015, 4, 662. [Google Scholar] [CrossRef] [PubMed]
- Hirano, T.; Kitahara, J.; Toriyama, Y.; Kasamatsu, H.; Murata, T.; Sadda, S. Quantifying Vascular Density and Morphology Using Different Swept-Source Optical Coherence Tomography Angiographic Scan Patterns in Diabetic Retinopathy. Br. J. Ophthalmol. 2019, 103, 216–221. [Google Scholar] [CrossRef]
- Poole, K.M.; McCormack, D.R.; Patil, C.A.; Duvall, C.L.; Skala, M.C. Quantifying the Vascular Response to Ischemia with Speckle Variance Optical Coherence Tomography. Biomed. Opt. Express 2014, 5, 4118–4130. [Google Scholar] [CrossRef]
- Gibb, A.A.; McNally, L.A.; Riggs, D.W.; Conklin, D.J.; Bhatnagar, A.; Hill, B.G. FVB/NJ Mice Are a Useful Model for Examining Cardiac Adaptations to Treadmill Exercise. Front. Physiol. 2016, 7, 636. [Google Scholar] [CrossRef] [PubMed]
- Stiles, C.D.; Isberg, R.R.; Pledger, W.J.; Antoniades, H.N.; Scher, C.D. Control of the Balb/c-3T3 Cell Cycle by Nutrients and Serum Factors: Analysis Using Platelet-Derived Growth Factor and Platelet-Poor Plasma. J. Cell. Physiol. 1979, 99, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zeng, Z.; Zhang, Y.; Zhang, Z.; Zhang, S.; Ni, G.; Liu, Y. Frequency-Sweep-Range-Reconfigurable Complementary Linearly Chirped Microwave Waveform Pair Generation by Using a Fourier Domain Mode Locking Optoelectronic Oscillator Based on Stimulated Brillouin Scattering. IEEE Photonics J. 2020, 12, 5501010. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, L.; Zhang, Y.; Zhang, Z.; Zhang, S.; Zhang, Y.; Sun, B.; Liu, Y. Frequency-Definable Linearly Chirped Microwave Waveform Generation by a Fourier Domain Mode Locking Optoelectronic Oscillator Based on Stimulated Brillouin Scattering. Opt. Express 2020, 28, 13861. [Google Scholar] [CrossRef] [PubMed]
- Mariampillai, A.; Leung, M.K.; Jarvi, M.; Standish, B.A.; Lee, K.; Wilson, B.C.; Vitkin, A.; Yang, V.X. Optimized Speckle Variance OCT Imaging of Microvasculature. Opt. Lett. 2010, 35, 1257–1259. [Google Scholar] [CrossRef] [PubMed]
- Conroy, L.; DaCosta, R.S.; Vitkin, I.A. Quantifying Tissue Microvasculature with Speckle Variance Optical Coherence Tomography. Opt. Lett. 2012, 37, 3180–3182. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.M.; Gu, S.; Jenkins, M.W.; Rollins, A.M. Orientation-Independent Rapid Pulsatile Flow Measurement Using Dual-Angle Doppler OCT. Biomed. Opt. Express 2014, 5, 499–514. [Google Scholar] [CrossRef] [PubMed]
- Preethi, G.U.; Unnikrishnan, B.S.; Sreekutty, J.; Archana, M.G.; Anupama, M.S.; Shiji, R.; Pillai, K.R.; Joseph, M.M.; Syama, H.P.; Sreelekha, T.T. Semi-Interpenetrating Nanosilver Doped Polysaccharide Hydrogel Scaffolds for Cutaneous Wound Healing. Int. J. Biol. Macromol. 2020, 142, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Dadzie, O.E.; Mahalingam, M.; Parada, M.; El Helou, T.; Philips, T.; Bhawan, J. Adverse Cutaneous Reactions to Soft Tissue Fillers–A Review of the Histological Features. J. Cutan. Pathol. 2008, 35, 536–548. [Google Scholar] [CrossRef]
- Li, W.; Li, P.; Fang, Y.; Lei, T.C.; Dong, K.; Zou, J.; Gong, W.; Xie, S.; Huang, Z. Quantitative Assessment of Skin Swelling Using Optical Coherence Tomography. Photodiagnosis Photodyn. Ther. 2019, 26, 413–419. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Song, F.; Liu, Y.-K. Hypertrophic Scar Regression Is Linked to the Occurrence of Endothelial Dysfunction. PLoS ONE 2017, 12, e0176681. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Es’ Haghian, S.; Harms, K.-A.; Murray, A.; Rea, S.; Kennedy, B.F.; Wood, F.M.; Sampson, D.D.; McLaughlin, R.A. Optical Coherence Tomography for Longitudinal Monitoring of Vasculature in Scars Treated with Laser Fractionation. J. Biophotonics 2016, 9, 626–636. [Google Scholar] [CrossRef] [PubMed]
- Waibel, J.; Beer, K. Ablative Fractional Laser Resurfacing for the Treatment of a Third-Degree Burn. J. Drugs Dermatol. 2009, 8, 294–297. [Google Scholar] [PubMed]
- Boye, J.I.; Ma, C.-Y.; Harwalkar, V.R. Thermal Denaturation and Coagulation of Proteins. In Food Proteins and Their Applications; CRC Press: Boca Raton, FL, USA, 2017; pp. 25–56. [Google Scholar]
- Lee, C.; Cheon, G.; Kim, D.-H.; Kang, J.U. Feasibility Study: Protein Denaturation and Coagulation Monitoring with Speckle Variance Optical Coherence Tomography. J. Biomed. Opt. 2016, 21, 125004. [Google Scholar] [CrossRef] [PubMed]
- Prado, R.P.; Pinfildi, C.E.; Liebano, R.E.; Hochman, B.S.; Ferreira, L.M. Effect of Application Site of Low-Level Laser Therapy in Random Cutaneous Flap Viability in Rats. Photomed. Laser Surg. 2009, 27, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wei, S.; Lee, S.; Sheu, M.; Kang, S.; Kang, J.U. Intraoperative Speckle Variance Optical Coherence Tomography for Tissue Temperature Monitoring During Cutaneous Laser Therapy. IEEE J. Transl. Eng. Health Med. 2019, 7, 1800608. [Google Scholar] [CrossRef]
- Fan, J.-X.; Zheng, D.-W.; Mei, W.-W.; Chen, S.; Chen, S.-Y.; Cheng, S.-X.; Zhang, X.-Z. A Metal–Polyphenol Network Coated Nanotheranostic System for Metastatic Tumor Treatments. Small 2017, 13, 1702714. [Google Scholar] [CrossRef]
- Shapiro, C.L.; Recht, A. Side Effects of Adjuvant Treatment of Breast Cancer. N. Engl. J. Med. 2001, 344, 1997–2008. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef]
- Macdonald, I.J.; Dougherty, T.J. Basic Principles of Photodynamic Therapy. J. Porphyr. Phthalocyanines 2001, 5, 105–129. [Google Scholar] [CrossRef]
- Fingar, V.H.; Kik, P.K.; Haydon, P.S.; Cerrito, P.B.; Tseng, M.; Abang, E.; Wieman, T.J. Analysis of Acute Vascular Damage after Photodynamic Therapy Using Benzoporphyrin Derivative (BPD). Br. J. Cancer 1999, 79, 1702–1708. [Google Scholar] [CrossRef]
- Sirotkina, M.A.; Matveev, L.A.; Shirmanova, M.V.; Zaitsev, V.Y.; Buyanova, N.L.; Elagin, V.V.; Gelikonov, G.V.; Kuznetsov, S.S.; Kiseleva, E.B.; Moiseev, A.A. Photodynamic Therapy Monitoring with Optical Coherence Angiography. Sci. Rep. 2017, 7, 41506. [Google Scholar] [CrossRef]
- Maruoka, Y.; Wakiyama, H.; Choyke, P.L.; Kobayashi, H. Near Infrared Photoimmunotherapy for Cancers: A Translational Perspective. eBioMedicine 2021, 70, 103501. [Google Scholar] [CrossRef]
- Nakajima, K.; Ogawa, M. Near-Infrared Photoimmunotherapy and Anti-Cancer Immunity. Int. Immunol. 2024, 36, 57–64. [Google Scholar] [CrossRef]
- Isoda, Y.; Piao, W.; Taguchi, E.; Iwano, J.; Takaoka, S.; Uchida, A.; Yoshikawa, K.; Enokizono, J.; Arakawa, E.; Tomizuka, K. Development and Evaluation of a Novel Antibody-Photon Absorber Conjugate Reveals the Possibility of Photoimmunotherapy-Induced Vascular Occlusion during Treatment in Vivo. Oncotarget 2018, 9, 31422. [Google Scholar] [CrossRef]
- Wu, S.; Okada, R.; Liu, Y.; Fang, Y.; Yan, F.; Wang, C.; Li, H.; Kobayashi, H.; Chen, Y.; Tang, Q. Quantitative Analysis of Vascular Changes during Photoimmunotherapy Using Speckle Variance Optical Coherence Tomography (SV-OCT). Biomed. Opt. Express 2021, 12, 1804–1820. [Google Scholar] [CrossRef]
- Liang, C.-P.; Nakajima, T.; Watanabe, R.; Sato, K.; Choyke, P.L.; Chen, Y.; Kobayashi, H. Real-Time Monitoring of Hemodynamic Changes in Tumor Vessels during Photoimmunotherapy Using Optical Coherence Tomography. J. Biomed. Opt. 2014, 19, 098004. [Google Scholar] [CrossRef]
- Paul, N.S.; Blobel, J.; Kashani, H.; Rice, M.; Ursani, A. Quantification of Arterial Plaque and Lumen Density with MDCT. Med. Phys. 2010, 37, 4227–4237. [Google Scholar] [CrossRef]
- ter Haar, G.; Coussios, C. High Intensity Focused Ultrasound: Physical Principles and Devices. Int. J. Hyperth. 2007, 23, 89–104. [Google Scholar] [CrossRef]
- Lee, S.; Lee, C.; Cheon, G.; Kim, J.; Jo, D.; Lee, J.; Kang, J.U. Ophthalmic Laser System Integrated with Speckle Variance Optical Coherence Tomography for Real-Time Temperature Monitoring. In Proceedings of the Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXII, San Francisco, CA, USA, 29–31 January 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10483, pp. 39–44. [Google Scholar]
- Elsner, H.; Pörksen, E.; Klatt, C.; Bunse, A.; Theisen-Kunde, D.; Brinkmann, R.; Birngruber, R.; Laqua, H.; Roider, J. Selective Retina Therapy in Patients with Central Serous Chorioretinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2006, 244, 1638–1645. [Google Scholar] [CrossRef] [PubMed]
- Tranos, P.G.; Wickremasinghe, S.S.; Stangos, N.T.; Topouzis, F.; Tsinopoulos, I.; Pavesio, C.E. Macular Edema. Surv. Ophthalmol. 2004, 49, 470–490. [Google Scholar] [CrossRef] [PubMed]
- Daruich, A.; Matet, A.; Dirani, A.; Bousquet, E.; Zhao, M.; Farman, N.; Jaisser, F.; Behar-Cohen, F. Central Serous Chorioretinopathy: Recent Findings and New Physiopathology Hypothesis. Prog. Retin. Eye Res. 2015, 48, 82–118. [Google Scholar] [CrossRef] [PubMed]
- Shaban, H.; BorrÁs, C.; ViNa, J.; Richter, C. Phosphatidylglycerol Potently Protects Human Retinal Pigment Epithelial Cells against Apoptosis Induced by A2E, a Compound Suspected to Cause Age-Related Macula Degeneration. Exp. Eye Res. 2002, 75, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Farjo, A.A.; Sugar, A.; Schallhorn, S.C.; Majmudar, P.A.; Tanzer, D.J.; Trattler, W.B.; Cason, J.B.; Donaldson, K.E.; Kymionis, G.D. Femtosecond Lasers for LASIK Flap Creation: A Report by the American Academy of Ophthalmology. Ophthalmology 2013, 120, e5–e20. [Google Scholar] [CrossRef]
- Prasuhn, M.; Miura, Y.; Tura, A.; Rommel, F.; Kakkassery, V.; Sonntag, S.; Grisanti, S.; Ranjbar, M. Influence of Retinal Microsecond Pulse Laser Treatment in Central Serous Chorioretinopathy: A Short-Term Optical Coherence Tomography Angiography Study. J. Clin. Med. 2021, 10, 2418. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Wei, S.; Guo, S.; Kim, J.; Kim, B.; Kim, G.; Kang, J.U. Selective Retina Therapy Monitoring by Speckle Variance Optical Coherence Tomography for Dosimetry Control. J. Biomed. Opt. 2020, 25, 026001. [Google Scholar] [CrossRef] [PubMed]
- Wojtkowski, M.; Srinivasan, V.; Fujimoto, J.G.; Ko, T.; Schuman, J.S.; Kowalczyk, A.; Duker, J.S. Three-Dimensional Retinal Imaging with High-Speed Ultrahigh-Resolution Optical Coherence Tomography. Ophthalmology 2005, 112, 1734–1746. [Google Scholar] [CrossRef] [PubMed]
- Selvam, S.; Kumar, T.; Fruttiger, M. Retinal Vasculature Development in Health and Disease. Prog. Retin. Eye Res. 2018, 63, 1–19. [Google Scholar] [CrossRef]
- Schwarzhans, F.; Desissaire, S.; Steiner, S.; Pircher, M.; Hitzenberger, C.K.; Resch, H.; Vass, C.; Fischer, G. Generating Large Field of View En-Face Projection Images from Intra-Acquisition Motion Compensated Volumetric Optical Coherence Tomography Data. Biomed. Opt. Express 2020, 11, 6881–6904. [Google Scholar] [CrossRef]
- Imran, A.; Li, J.; Pei, Y.; Yang, J.-J.; Wang, Q. Comparative Analysis of Vessel Segmentation Techniques in Retinal Images. IEEE Access 2019, 7, 114862–114887. [Google Scholar] [CrossRef]
- de Moura, J.; Samagaio, G.; Novo, J.; Almuina, P.; Fernández, M.I.; Ortega, M. Joint Diabetic Macular Edema Segmentation and Characterization in OCT Images. J. Digit. Imaging 2020, 33, 1335–1351. [Google Scholar] [CrossRef]
- Hu, Q.; Hu, S.; Zhang, F. Multi-Modality Medical Image Fusion Based on Separable Dictionary Learning and Gabor Filtering. Signal Process. Image Commun. 2020, 83, 115758. [Google Scholar] [CrossRef]
- Lafkih, S.; Zaz, Y. Image Mosaicing Review: Application on Solar Plant Frames. In Proceedings of the 2018 6th International Conference on Multimedia Computing and Systems (ICMCS), Rabat, Morocco, 10–12 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–7. [Google Scholar]
- Min, E.; Lee, J.; Vavilin, A.; Jung, S.; Shin, S.; Kim, J.; Jung, W. Wide-Field Optical Coherence Microscopy of the Mouse Brain Slice. Opt. Lett. 2015, 40, 4420–4423. [Google Scholar] [CrossRef]
- Khaing, Z.Z.; Cates, L.N.; DeWees, D.M.; Hannah, A.; Mourad, P.; Bruce, M.; Hofstetter, C.P. Contrast-Enhanced Ultrasound to Visualize Hemodynamic Changes after Rodent Spinal Cord Injury. J. Neurosurg. Spine 2018, 29, 306–313. [Google Scholar] [CrossRef]
- Mitsunaga, M.; Ogawa, M.; Kosaka, N.; Rosenblum, L.T.; Choyke, P.L.; Kobayashi, H. Cancer Cell–Selective in Vivo near Infrared Photoimmunotherapy Targeting Specific Membrane Molecules. Nat. Med. 2011, 17, 1685–1691. [Google Scholar] [CrossRef]
Application | Key Features | Limitations | References |
---|---|---|---|
Mouse Cardiovascular Imaging | Reduced Cardio-Respiratory Motion Simplified Stabilization Jig Depth Resolved Imaging High Microvascular Network Resolution | Limited Depth Penetration Bulk Motion Sensitivity The trade-off with Transverse Resolution Need of post-processing | [22,30,41,50,87] |
Temperature Effects on Tissues | Non-invasive detailed imaging of tissues under varying temperature conditions Monitoring protein denaturation and coagulation in real-time Facilitating precise quantitative measurements of temperature effects Consistent trends across different sites | Limited penetration depth for deeper tissue assessment. In vivo assessments are crucial for achieving high precision. The potential presence of artifacts, attributed to temperature variations. The challenge in post-coagulation temperature monitoring. | [55,57] |
Photodynamic Therapy (PDT) | Potential advantages of SV-OCT over fluorescence microscopy Detection of thrombosis, a key microvascular reaction to PDT Confirms microvascular network changes and early tumor reactions through histology | Artifacts from Multiple Scattering Influence of Interframe Bulk Tissue Motion Emphasizes the need for in vivo human assessments before clinical application | [20,60,61,62,63,88] |
Near-Infrared Photoimmunotherapy (NIT-PIT): | Visualizes vascular changes during NIT-PIT Monitors changes in vessel diameter, lumen density, and blood volume during treatment Contrast Agent-Free Imaging | The technical functionality of the system needs enhancement Imaging Speed Limitations Limited FOV and Spatial Resolution | [66,67,68] |
Focused Ultrasound Treatment | Non-invasive tissue heating and ablation Investigates temporal vascular effects during FUS treatment Utilizes SV-OCT for real-time assessment of FUS therapy Quantitative Comparison with and without Microbubbles 2D and 3D imaging, providing a comprehensive view of the vascular changes Speckle Variance for Blood Leakage Detection | SV-OCT images reveal various speckles but limited quantitative results. Limited FOV and Spatial Resolution Resolution Trade-offs and Image Artifacts Data Processing Complexity Cost Considerations Lack of standardized protocols for combining OCT with FUS | [23,70] |
Laser-Based Treatments in Ophthalmology | Linear Dependence of SV-OCT Signal on Laser Energy Ultrahigh-resolution imaging allows for better visualization and segmentation of individual intraretinal layers Phantom Study Validation Two radiation modes, classic and ramping, are explored Real-time feedback from SV-OCT imaging | Melanin Concentration Variability Handling and interpreting the large volume of data generated by SV-OCT Validation is needed through clinical studies and trials | [57,71] |
Scar Progression Monitoring | Non-invasive assessment of scar progression longitudinal monitoring of scar progression Sensitive to various tissue changes induced by laser treatments Quantitative assessment of scar progression | Artifact Mitigation Variability in optical properties of ocular tissues Lack of Standardization of Protocols | [31,51,52,53,56] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijesinghe, R.E.; Kahatapitiya, N.S.; Lee, C.; Han, S.; Kim, S.; Saleah, S.A.; Seong, D.; Silva, B.N.; Wijenayake, U.; Ravichandran, N.K.; et al. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. Micromachines 2024, 15, 564. https://doi.org/10.3390/mi15050564
Wijesinghe RE, Kahatapitiya NS, Lee C, Han S, Kim S, Saleah SA, Seong D, Silva BN, Wijenayake U, Ravichandran NK, et al. Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. Micromachines. 2024; 15(5):564. https://doi.org/10.3390/mi15050564
Chicago/Turabian StyleWijesinghe, Ruchire Eranga, Nipun Shantha Kahatapitiya, Changho Lee, Sangyeob Han, Shinheon Kim, Sm Abu Saleah, Daewoon Seong, Bhagya Nathali Silva, Udaya Wijenayake, Naresh Kumar Ravichandran, and et al. 2024. "Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications" Micromachines 15, no. 5: 564. https://doi.org/10.3390/mi15050564
APA StyleWijesinghe, R. E., Kahatapitiya, N. S., Lee, C., Han, S., Kim, S., Saleah, S. A., Seong, D., Silva, B. N., Wijenayake, U., Ravichandran, N. K., Jeon, M., & Kim, J. (2024). Growing Trend to Adopt Speckle Variance Optical Coherence Tomography for Biological Tissue Assessments in Pre-Clinical Applications. Micromachines, 15(5), 564. https://doi.org/10.3390/mi15050564