A Novel Low-Temperature Extrusion Method for the Fused Filament Fabrication of Fluoroelastomer Compounds
Abstract
:1. Introduction
2. Experimental Section: Materials and Methods
2.1. Precursors and Material Preparation
2.2. Three-Dimensional Printing
2.3. Thermal and Mechanical Analysis
3. Results and Discussion
3.1. Addressing Challenges in FKM and FFKM Rubber Additive Manufacturing
3.1.1. Issue 1: Nozzle Clogging
3.1.2. Issue 2: Filament Buckling
3.1.3. Issue 3: Under-Extrusion
3.1.4. Issue 4: Poor Bed Adhesion
3.2. Identifying Optimal 3D-Printing Parameters for FKM and FFKM Rubber Filaments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wang, W.; Wu, F.; Kankala, R.K. Vat polymerization based 3D printing of nanocomposites: A mini review. Front. Mater. 2022, 9, 1118943. [Google Scholar] [CrossRef]
- Pagae, M.; Hajnys, J.; Ma, Q.-P.; Jancar, L.; Jansa, J.; Stefek, P.; Mesicek, J. A review of vat polymerization technology, materials, applications, challenges, and future trends. Polymers 2021, 13, 598. [Google Scholar] [CrossRef] [PubMed]
- Mostafaei, A.; Elliott, A.M.; Barnes, J.E.; Li, F.; Tan, W.; Cramer, C.L.; Nandwana, P.; Chmielus, M. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges. Prog. Mater. Sci. 2021, 119, 113943. [Google Scholar] [CrossRef]
- Sen, K.; Mehta, T.; Sansare, S.; Ma, A.W.K.; Chaudhuri, B. Pharmaceutical applications of powder-based binder jet 3D printing process—A review. Adv. Drug Deliv. Rev. 2021, 177, 113943. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.D.; Mahender, T.; Reddy, A.R. Powder bed fusion process: A brief review. Mater. Today Proc. 2021, 46, 350–355. [Google Scholar] [CrossRef]
- Dejene, N.D.; Lemu, H.G. Status, and Challenges of powder bed fusion-based metal additive manufacturing: Literature review. Metals 2021, 13, 424. [Google Scholar] [CrossRef]
- Wasti, S.; Adhikari, S. Use of biomaterials for 3D printing by fused deposition modeling technique: A review. Front. Chem. 2020, 8, 315. [Google Scholar] [CrossRef] [PubMed]
- Kristiawan, R.B.; Imaduddin, F.; Ariawan, D.; Ubaidillah; Arifin, Z. A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials and printing parameters. Open Eng. 2021, 11, 639–649. [Google Scholar] [CrossRef]
- Shaik, Y.P.; Schuster, J.; Shaik, A. A scientific review on various pellet extruders used in 3D printing FDM processes. Open Access Libr. J. 2021, 8, 1–19. [Google Scholar] [CrossRef]
- Netto, J.M.J.; Idogava, H.T.; Santos, L.E.F.; de Castro Silveira, Z.; Romio, P.; Alves, J.L. Screw assisted 3D Printing with granulated materials: A systematic review. Int. J. Adv. Manuf. Technol. 2021, 115, 2711–2727. [Google Scholar] [CrossRef]
- Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M. 3D Printing of Flexible Parts Using EVA Material. Mater. Phys. Mech. 2018, 37, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Jain, P.K.; Tandon, P.; Pandey, P.M. Additive Manufacturing of Flexible Electrically Conductive Polymer Compositions Using CNC-Assisted Fused Layer Modeling Process. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 175. [Google Scholar] [CrossRef]
- Elkins, K.; Nordby, H.; Janak, C.; Gray, R.W., IV; Helge Bohn, J.; Baird, D.G. Soft Elastomers for Fused Deposition Modeling, Virginia Polytechnic Institute and State University. In Proceedings of the International Solid Freeform Fabrication Symposium, Austin, TX, USA, 11–13 August 1997. [Google Scholar]
- Rodgers, B. Rubber Compounding: Chemistry and Applications, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Baranwal, K.C.; Stephens, H.L. Basic Elastomer Technology; The Rubber Division, American Chemical Society: Independence, OH, USA, 2001. [Google Scholar]
- Roland, C.M. Science and Technology of Rubber; Erman, B., Mark, J.E., Roland, C.M., Eds.; Elsevier Academic Press: Cambridge, MA, USA, 2013; p. 285. [Google Scholar]
- Kazmer, D.; Kodra, S.; Mubasshir, A.A.; Keaney, E.E.; Mead, J.L. Additive RAM extrusion and diddling of fully compounded thermoset nitrile rubber. Polym. Compos. 2021, 42, 5237–5248. [Google Scholar] [CrossRef]
- Leineweber, S.; Reitz, B.; Overmeyer, L.; Sundermann, L.; Klie, B.; Giese, U. Additive manufacturing and vulcanization of natural and synthetic rubbers. Logist. J. Proc. 2022, 2022, 2192–9084. [Google Scholar] [CrossRef]
- Rodriguez, N.; Ruelas, S.; Forien, J.-B.; Dudukovic, N.; DeOtte, J.; Rodriguez, J.; Moran, B.; Lewicki, J.P.; Duoss, E.B.; Oakdale, J.S. 3D Printing of high viscosity reinforced silicone elastomers. Polymers 2021, 13, 2239. [Google Scholar] [CrossRef] [PubMed]
- Periyasamy, M.; Campbell, R.; Hickner, M.; Peeke, L.; Liu, W. 3D Printing of Articles such as Seals, Gaskets, and Other Components from Thermoset Silicone and Thermoplastic and Apparatus Used for Them. In Proceedings of the International Elastomer Conference 2022, St. Knoxville, TN, USA, 10–13 October 2022. [Google Scholar]
- Liu, W.; Campbell, R.R.; Periyasamy, M.; Hickner, M.A. Additive manufacturing of silicone-thermoplastic elastomeric composite architectures. J. Compos. Mater. 2022, 26, 4409–4419. [Google Scholar] [CrossRef]
- Chen, S.; Chen, S.; Tan, W.S.; Juhari, M.A.B.; Shi, Q.; Cheng, X.S.; Chan, W.L.; Song, J. Freeform 3D printing of soft matters. Biomed. Eng. Lett. 2020, 10, 453–479. [Google Scholar] [CrossRef] [PubMed]
- Hinton, J.; Hudson, A.; Pusch, K.; Lee, A.; Feinberg, A.W. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding. ACS Biomater. Sci. Eng. 2016, 2, 1781–1786. [Google Scholar] [CrossRef] [PubMed]
- Stang, M.; Tashman, J.; Shiwarski, D.; Yang, H.; Yao, L.; Feinberg, A. Embedded 3D Printing of Thermally Cured Elastomers. Adv. Mater. Technol. 2023, 8, 2200984. [Google Scholar] [CrossRef]
- Francis, L.F. Materials Processing: A Unified Approach to Processing of Metals, Ceramics and Polymers; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Maclachlan, J.D. Fluorocarbon Elastomers: A Technical Review. Polym. Plast. Technol. Eng. 1978, 11, 41–53. [Google Scholar] [CrossRef]
- Montermoso, J.C. Fluorine-Containing Elastomers. Rubber Chem. Technol. 1961, 34, 1521–1552. [Google Scholar] [CrossRef]
- Logothetis, A.L. Chemistry of fluorocarbon elastomers. Prog. Polym. Sci. 2003, 14, 251–296. [Google Scholar] [CrossRef]
- Patel, H.; Salehi, S.; Ahmed, R.; Teodoriu, C. Review of elastomer seal assemblies in oil & gas wells: Performance evaluation, failure mechanisms, and gaps in industry standards. J. Pet. Sci. Eng. 2019, 179, 1046–1062. [Google Scholar] [CrossRef]
- Periyasamy, M.; Campbell, R.R.; Sassano, E.; Mead, J.; Kazmer, D.; Banerjee, S.; Burbine, S.; Keaney, E.E.; Phaen, L. Articles Formed from Fluorine-Containing Elastomer Compositions Using an Additive Manufacturing Method and Additive Manufacturing Methods for Thermoset Elastomer Compositions. European Patent Office EP4126514A1, 8 February 2023. [Google Scholar]
- Mansfield, C.; Hughes, J.W.; Gurevich, E.; Ux, B.; Quartapella, C. Fast Curing Fluoroelastomeric Compositions, Adhesive Fluoroelastomeric Compositions, and Methods for Bonding Fluoroelastomeric Compositions. U.S. Patent No. 7514506 B2, 7 April 2009. [Google Scholar]
- Perfluoroelastomer (FFKM) and Fluoroelastomer (FKM) Seals for Photovoltaic Cell Manufacturing Processes. Technical Information—Rev. 1, July 2010 Paper Presented at InterSolar SMET, May 2009. Available online: https://www.dupont.com/content/dam/dupont/amer/us/en/kalrez/public/documents/en/Perfluoroelastomer_and_Fluoroelastomer_Seals_for_Photovoltaic_Cell_Manufacturing_Processes.pdf (accessed on 3 March 2024).
- Hemera Extruder. 2019. Available online: https://e3d-online.com/blogs/news/e3d-hemera-a-next-generation-extrusion-system (accessed on 3 March 2024).
- E3D Hermes Datasheet. Available online: https://cdn.shopify.com/s/files/1/0239/9287/files/Hermes_Datasheet__Edition_1.pdf?184 (accessed on 3 March 2024).
- ASTM D412-16; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers—Tension. ASTM: West Conshohocken, PA, USA, 2021. [CrossRef]
- Maxfield, B. Essential Mathcad for Engineering, Science, and Math, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009. [Google Scholar] [CrossRef]
- Francis, L.F.; Stadler, B.J.H.; Roberts, C.C. Material Processing: A Unified Approach to Processing of Metals, Ceramics, and Polymers, 1st ed.; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Hoffman, O.; Sachs, G. Introduction to Plasticity for Engineers; McGraw Hill: New York, NY, USA, 1953. [Google Scholar]
Element | Component | Weight Percentage (%) | |
---|---|---|---|
FKM Compound | FFKM Compound | ||
Elastomer | FKM | 74.08 | - |
FFKM | - | 98.72 | |
Curative | Peroxide cure package | 3.70 | - |
BOAP | - | 1.28 | |
Filler | Silica | 22.22 | - |
Properties | FKM Compound | FFKM Compound | Source | ||
---|---|---|---|---|---|
RT | Precooled | RT | Precooled | ||
A. Material properties | |||||
Modulus at drive, (MPa) | 3 | 36 | 2 | 17 | DMA results from Figure 5 |
Modulus at nozzle, (MPa) | 3 | 3 | 2 | 2 | |
B. Filament geometry | |||||
Filament diameter, (mm) | 1.75 | 1.75 | 1.75 | 1.75 | N/A |
Free column length, L (mm) | 5 | 5 | 5 | 5 | N/A |
C. Analysis | |||||
Buckling force, F (N) | 0.5 | 6.5 | 0.4 | 3.1 | |
Buckling pressure, P (MPa) | 0.2 | 2.7 | 0.2 | 1.3 | |
Maximum draw ratio, (mm/mm) | 1.1 | 2.5 | 1.1 | 1.9 | |
Minimum nozzle diameter, (mm) | 1.7 | 1.1 | 1.7 | 1.3 |
Print Parameters | Values |
---|---|
Nozzle size | 1.6 mm (tapered) |
Print temperature | 150 °C |
Cooler temperature | −60 °C |
Nozzle temperature | 40 °C |
Print speed | 7 mm/s |
Layer height | 1 mm |
Line width | 1.75 mm |
Infill density | 100% |
Adhesive on bed | yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periyasamy, M.; Campbell, R.; Mead, J.M.; Kazmer, D.O.; Banerjee, S.; Mubasshir, A.; Phaen, L.A.; Kodra, S. A Novel Low-Temperature Extrusion Method for the Fused Filament Fabrication of Fluoroelastomer Compounds. Micromachines 2024, 15, 582. https://doi.org/10.3390/mi15050582
Periyasamy M, Campbell R, Mead JM, Kazmer DO, Banerjee S, Mubasshir A, Phaen LA, Kodra S. A Novel Low-Temperature Extrusion Method for the Fused Filament Fabrication of Fluoroelastomer Compounds. Micromachines. 2024; 15(5):582. https://doi.org/10.3390/mi15050582
Chicago/Turabian StylePeriyasamy, Mookkan, Ronald Campbell, Joey M. Mead, David O. Kazmer, ShibShankar Banerjee, AA Mubasshir, Leeda A. Phaen, and Stiven Kodra. 2024. "A Novel Low-Temperature Extrusion Method for the Fused Filament Fabrication of Fluoroelastomer Compounds" Micromachines 15, no. 5: 582. https://doi.org/10.3390/mi15050582
APA StylePeriyasamy, M., Campbell, R., Mead, J. M., Kazmer, D. O., Banerjee, S., Mubasshir, A., Phaen, L. A., & Kodra, S. (2024). A Novel Low-Temperature Extrusion Method for the Fused Filament Fabrication of Fluoroelastomer Compounds. Micromachines, 15(5), 582. https://doi.org/10.3390/mi15050582