Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique
Abstract
:1. Introduction
2. Force Applied on Individual Cells Using the Capacitor-Based Method
3. Conceptualization of the Electric Force Applicator
4. Materials and Methods
4.1. Biological Dielectrics
4.2. Experimental Media
4.2.1. Citric Acid, Sodium Citrate, and Dextrose (ACD) Solution
4.2.2. Measuring Solution
4.2.3. Erythrocytes
4.2.4. Sample Preparation
4.2.5. Infected Erythrocytes
4.2.6. Isolation and Preparation of P. falciparum-Infected Erythrocytes (iRBC)
4.2.7. Capacitor-Based Method: Experimental Considerations and Frequency
4.3. Measuring Force Using an Optical Trap
5. Results
5.1. Cell Deformation under Electric Fields
5.2. Red Blood Cell Stiffness
5.3. Comparative Analysis from RBC Stiffness Values Obtained from Optical Traps vs. Electric Field Devices
5.4. Falciparum-Infected Erythrocyte Stiffness
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, G.Y.H.; Lim, C.T. Biomechanics approaches to studying human diseases. Trends Biotechnol. 2007, 25, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Brandão, M.; Fontes, A.; Barjas-Castro, M.; Barbosa, L.; Costa, F.; Cesar, C.; Saad, S. Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease. Eur. J. Haematol. 2003, 4, 207–211. [Google Scholar] [CrossRef]
- Suresh, S.; Spatz, J.; Mills, J.; Micoulet, A.; Dao, M.; Lim, C.; Beil, M.; Seufferlein, T. Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 2005, 1, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Ross, C.; Siriwardane, M.; Almeida-Porada, G.; Porada, C.; Brink, P.; Christ, G.; Harrison, B. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res. 2015, 15, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xia, J.; Li, J.; Hagemann, T.L.; Jones, J.R.; Fraenkel, E.; Weitz, D.A.; Zhang, S.C.; Messing, A.; Feany, M.B. Tissue and cellular rigidity and mechanosensitive signaling activation in Alexander disease. Nat. Commun. 2018, 9, 1899. [Google Scholar] [CrossRef]
- Swaminathan, V.; Mythreye, K.; O’Brien, E.T.; Berchuck, A.; Blobe, G.C.; Superfine, R. Mechanical stiffness grades metastatic potential in patient tumor cells and in cancer cell lines. Cancer Res. 2011, 15, 5075–5080. [Google Scholar] [CrossRef] [PubMed]
- Cross, S.E.; Jin, Y.S.; Rao, J.; Gimzewski, J.K. Nanomechanical analysis of cells from cancer patients. Nat. Nanotech. 2007, 2, 780–783. [Google Scholar] [CrossRef]
- Loeffler, M.; Danker, T.; Brunner, T. Cancer development and microenvironmental stiffness. Nat. Rev. Cancer 2019, 19, 688–700. [Google Scholar]
- Mohandas, N.; Evans, E. Sickle cell disease: Genetic basis and molecular pathophysiology. Hematol. Oncol. Clin. N. Am. 2000, 14, 819–844. [Google Scholar]
- Trickey, W.R.; Lee, G.M.; Guilak, F. Viscoelastic properties of chondrocytes from normal and osteoarthritic human cartilage. J. Orthop. Res. 2000, 18, 891–898. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, Z.; Zhu, W.; Hu, H.; Wang, J. Application of optical tweezers in cardiovascular research: More than just a measuring tool. Front. Bioeng. Biotechnol. 2022, 10, 947918, Erratum in: Front. Bioeng. Biotechnol. 2022, 10, 1075082. [Google Scholar] [CrossRef] [PubMed]
- Bancroft-Pierce, C.; Seed, R.J.; Dusting, G.J. Myocardial stiffness, hypertrophy and failure: Contributions of cellular and extracellular mechanics. Cardiovasc. Res. 2013, 97, 199–209. [Google Scholar]
- Morgan, E.F.; Unnikrisnan, G.U.; Hussein, A.I. Bone Mechanical Properties in Healthy and Diseased States. Annu. Rev. Biomed. Eng. 2018, 20, 119–143. [Google Scholar] [CrossRef] [PubMed]
- Matthews, K.M.; Pitman, E.L.; de Koning-Ward, T.F. Illuminating how malaria parasites export proteins into host erythrocytes. Cell Microbiol. 2019, 21, e13009. [Google Scholar] [CrossRef] [PubMed]
- Siau, A.; Ang, J.W.; Sheriff, O.; Hoo, R.; Loh, H.P.; Tay, D.; Huang, X.; Yam, X.Y.; Lai, S.K.; Meng, W.; et al. Comparative spatial proteomics of Plasmodium-infected erythrocytes. Cell Rep. 2023, 42, 113419. [Google Scholar] [CrossRef] [PubMed]
- Alves-Rosa, M.F.; Tayler, N.M.; Dorta, D.; Coronado, L.M.; Spadafora, C.P. Falciparum Invasion and Erythrocyte Aging. Cells 2024, 13, 334. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Evans, E.A. New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys. J. 1973, 13, 941–954. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.; Lim, C.T.; Suresh, S. Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 2003, 51, 2259–2280. [Google Scholar] [CrossRef]
- MacIaszek, J.; Andemariam, B.; Lykotrafitis, G. Microelasticity of red blood cells in sickle cell disease. J. Strain Anal. Eng. Des. 2011, 46, 368–379. [Google Scholar] [CrossRef]
- Rosenhek-Goldian, I.; Abou Karam, P.; Regev-Rudzki, N.; Rojas, A. Imaging of Extracellular Vesicles Derived from Plasmodium falciparum-Infected Red Blood Cells Using Atomic Force Microscopy. Methods Mol. Biol. 2022, 2470, 133–145. [Google Scholar]
- Kriegel, F.; Ermann, N.; Lipfert, J. Probing the mechanical properties, conformational changes, and interactions of nucleic acids with magnetic tweezers. J. Struct. Biol. 2017, 197, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.C.; Gaihre, B.; Kijanka, P.; Lu, L.; Urban, M.W. Acoustic Force Elastography Microscopy. IEEE Trans. Biomed. Eng. 2023, 70, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Rufo, J.; Zhong, R.; Rich, J.; Wang, Z.; Lee, L.P.; Huang, T.J. Acoustic tweezers for high-throughput single-cell analysis. Nat. Protoc. 2023, 18, 2441–2458. [Google Scholar] [CrossRef] [PubMed]
- Rebrosova, K.; Samek, O.; Kizovsky, M.; Bernatova, S.; Hola, V.; Ruzicka, F. Raman Spectroscopy-A Novel Method for Identification and Characterization of Microbes on a Single-Cell Level in Clinical Settings. Front. Cell Infect. Microbiol. 2022, 22, 866463. [Google Scholar] [CrossRef] [PubMed]
- Elsayad, K.; Palombo, F.; Dehoux, T.; Fioretto, D. Brillouin. Light Scattering Microspectroscopy for Biomedical Research and Applications: Introduction to feature issue. Biomed. Opt. Express 2019, 10, 2670–2673. [Google Scholar] [CrossRef] [PubMed]
- Polacheck, W.J.; Chen, C.S. Measuring cell-generated forces: A guide to the available tools. Nat. Methods 2016, 13, 415–423. [Google Scholar] [CrossRef]
- Roca-Cusachs, P.; Conte, V.; Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 2017, 19, 742–751. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Dao, M.; Suresh, S. Quantitative Biomechanics of Healthy and Diseased Human Red Blood Cells using Dielectrophoresis in a Microfluidic System. Extrem. Mech. Lett. 2014, 1, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Engelhardt, H.; Gaub, H.; Sackmann, E. Viscoelastic properties of erythrocyte membranes in high-frequency electric fields. Nature 1984, 307, 378–380. [Google Scholar] [CrossRef]
- Kojic, S.P.; Stojanovic, G.M.; Radonic, V. Novel Cost-Effective Microfluidic Chip Based on Hybrid Fabrication and Its Comprehensive Characterization. Sensors 2019, 19, 1719. [Google Scholar] [CrossRef]
- Engelhardt, H.; Sackmann, E. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high-frequency electric fields. Biophys. J. 1988, 54, 495–508. [Google Scholar] [CrossRef] [PubMed]
- Krueger, M.; Thom, F. Deformability and stability of erythrocytes in high-frequency electric fields down to subzero temperatures. Biophys. J. 1997, 73, 2653–2666. [Google Scholar] [CrossRef] [PubMed]
- Tomaiuolo, G. Biomechanical properties of red blood cells in health and disease towards microfluidics. Biomicrofluidics 2014, 8, 051501. [Google Scholar] [CrossRef] [PubMed]
- Diez-Silva, M.; Dao, M.; Han, J.; Lim, C.T.; Suresh, S. Shape and Biomechanical Characteristics of Human Red Blood Cells in Health and Disease. MRS Bull. 2010, 35, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Gascoyne, P.; Mahidol, C.; Ruchirawat, M.; Satayavivad, J.; Watcharasit, P.; Becker, F. Microsample preparation by dielectrophoresis: Isolation of malaria. Lab Chip 2002, 2, 70–75. [Google Scholar] [CrossRef]
- Yale, P.; Kouacou, M.A.; Konin, J.-M.E.; Megnassan, E.; Zoueu, J.T. Lateral Deformation of Human Red Blood Cells by Optical Tweezers. Micromachines 2021, 12, 1024. [Google Scholar] [CrossRef] [PubMed]
- Trager, W.; Jensen, J. Human Malaria Parasites in Continuous Culture. Science 1976, 193, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Coronado, L.M.; Nadovich, C.T.; Spadafora, C. Malarial hemozoin: From target to tool. Biochim. Biophys. Acta 2014, 1840, 2032–2041. [Google Scholar] [CrossRef] [PubMed]
- Coronado, L.M.; Tayler, N.M.; Correa, R.; Giovani, R.M.; Spadafora, C. Separation of Plasmodium falciparum Late Stage- infected Erythrocytes by Magnetic Means. J. Vis. Exp. 2013, 73, e50342. [Google Scholar]
- Dorta, D.; Padmore, P.; Correa, R.; Pineda, L.; Spadafora, C.; Sarmiento-Gómez, E.; Coronado, L.M. Optical tweezers to measure the elasticity of red blood cells: A tool to study the erythrocyte response to antimalarials. Front. Malar. 2024, 2, 1362644. [Google Scholar] [CrossRef]
- Glenister, F.K.; Coppel, R.L.; Cowman, A.F.; Mohandas, N.; Cooke, B.M. Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 2002, 99, 1060–1063. [Google Scholar] [CrossRef] [PubMed]
- Papagiakoumou, E.; Pietreanu, D.; Makropoulou, M.I.; Kovacs, E.; Serafetinides, A.A. Evaluation of trapping efficiency of optical tweezers by dielectrophoresis. J. Biomed. Opt. 2006, 11, 014035. [Google Scholar] [CrossRef] [PubMed]
Voltage ± 0.001 (V) | Field Intensity (kV/m) | Radius-X Axis ± 0.035 (µm) | Radius-Y Axis ± 0.035 (µm) |
---|---|---|---|
0 | 0 | 3.87 | 4.06 |
0.865 | 16.6 ± 1.7 | 3.92 | 3.92 |
1.71 | 32.9 ± 3.3 | 4.43 | 3.83 |
2.545 | 48.9 ± 4.9 | 4.6 | 3.35 |
3.355 | 64.5 ± 6.4 | 4.92 | 3.17 |
4.16 | 80 ± 8.0 | 5.33 | 2.94 |
Voltage ± 0.001 (V) | Field Intensity (kV/m) | Radius-X Axis ± 0.035 (µm) | Radius-Y Axis ± 0.035 (µm) |
---|---|---|---|
0.3 | 9.2 ± 0.9 | 2.51 | 3.54 |
0.9 | 20.0 ± 2.0 | 2.62 | 3.45 |
1.3 | 27.8 ± 2.8 | 2.4 | 3.52 |
1.4 | 39.2 ± 3.9 | 2.65 | 3.55 |
1.8 | 44.2 ± 4.4 | 2.5 | 3.54 |
2.1 | 55.7 ± 5.6 | 2.59 | 3.58 |
2.4 | 66.2 ± 6.6 | 2.7 | 3.52 |
2.5 | 73.9 ± 7.4 | 2.7 | 3.52 |
2.8 | 78.5 ± 7.8 | 2.54 | 3.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorta, D.; Plazaola, C.; Carrasco, J.; Alves-Rosa, M.F.; Coronado, L.M.; Correa, R.; Zambrano, M.; Gutiérrez-Medina, B.; Sarmiento-Gómez, E.; Spadafora, C.; et al. Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique. Micromachines 2024, 15, 590. https://doi.org/10.3390/mi15050590
Dorta D, Plazaola C, Carrasco J, Alves-Rosa MF, Coronado LM, Correa R, Zambrano M, Gutiérrez-Medina B, Sarmiento-Gómez E, Spadafora C, et al. Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique. Micromachines. 2024; 15(5):590. https://doi.org/10.3390/mi15050590
Chicago/Turabian StyleDorta, Doriana, Carlos Plazaola, Jafeth Carrasco, Maria F. Alves-Rosa, Lorena M. Coronado, Ricardo Correa, Maytee Zambrano, Braulio Gutiérrez-Medina, Erick Sarmiento-Gómez, Carmenza Spadafora, and et al. 2024. "Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique" Micromachines 15, no. 5: 590. https://doi.org/10.3390/mi15050590
APA StyleDorta, D., Plazaola, C., Carrasco, J., Alves-Rosa, M. F., Coronado, L. M., Correa, R., Zambrano, M., Gutiérrez-Medina, B., Sarmiento-Gómez, E., Spadafora, C., & Gonzalez, G. (2024). Mechanical Characterization of the Erythrocyte Membrane Using a Capacitor-Based Technique. Micromachines, 15(5), 590. https://doi.org/10.3390/mi15050590