Flexible Peripheral Nerve Interfacing Electrode for Joint Position Control in Closed-Loop Neuromuscular Stimulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling of Three-Dimensional Surface-Based Inversed Recruitment
- Given the point in a triangular plane, we can obtain the barycentric coordinates , , and from their corresponding Cartesian coordinates.
- We can express the Cartesian coordinates of point in terms of the Cartesian components of the triangle vertices and .
- To determine the barycentric position of each , where , we use the following equations:
- The point lies inside the triangle if and only if , where .
- The input point is selected from the nearest recruitment coordinate using the barycentric coordinate method.
2.2. Animal Preparation and Electrode Implantation
2.3. Data Acquisition and Neuromodulation
2.4. Joint Position Control Setup
2.5. Joint Position Performance Evaluation
3. Results
3.1. Estimation of Surface-Based Inverse Recruitment Model
3.2. Closed-Loop Ankle-Position Control via Surface-Based Inverse Recruitment Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cavallaro, E.; Cappiello, G.; Micera, S.; Carrozza, M.; Rantanen, P.; Dario, P. On the development of a biomechatronic system to record tendon sliding movements. IEEE Trans. Biomed. Eng. 2005, 52, 1110–1119. [Google Scholar] [CrossRef]
- Cavallaro, E.; Micera, S.; Dario, P.; Jensen, W.; Sinkjaer, T. On the intersubject generalization ability in extracting kinematic information from afferent nervous signals. IEEE Trans. Biomed. Eng. 2003, 50, 1063–1073. [Google Scholar] [CrossRef]
- Cavallaro, E.; Rosen, J.; Perry, J.; Burns, S. Real-time myoprocessors for a neural controlled powered exoskeleton arm. IEEE Trans. Biomed. Eng. 2006, 53, 2387–2396. [Google Scholar] [CrossRef]
- Chu, J.-U.; Song, K.-I.; Han, S.; Lee, S.H.; Kang, J.Y.; Hwang, D.; Suh, J.-K.F.; Choi, K.; Youn, I. Gait phase detection from sciatic nerve recordings in functional electrical stimulation systems for foot drop correction. Physiol. Meas. 2013, 34, 541–565. [Google Scholar] [CrossRef]
- Crago, P.E.; Mortimer, J.T.; Peckham, P.H. Closed-loop control of force during electrical stimulation of muscle. IEEE Trans. Biomed. Eng. 1980, BME-27, 306–312. [Google Scholar] [CrossRef]
- Creasey, G.H.; Ho, C.H.; Triolo, R.J.; Gater, D.R.; DiMarco, A.F.; Bogie, K.M.; Keith, M.W. Clinical applications of electrical stimulation after spinal cord injury. J. Spinal Cord Med. 2004, 27, 365–375. [Google Scholar] [CrossRef]
- E Downs, M.; A Lee, S.; Yang, G.; Kim, S.; Wang, Q.; E Konofagou, E. Non-invasive peripheral nerve stimulation via focused ultrasound in vivo. Phys. Med. Biol. 2018, 63, 035011. [Google Scholar] [CrossRef]
- Durfee, W.; MacLean, K. Methods for estimating isometric recruitment curves of electrically stimulated muscle. IEEE Trans. Biomed. Eng. 1989, 36, 654–667. [Google Scholar] [CrossRef]
- Floater, M.S.; Hormann, K.; Kós, G. A general construction of barycentric coordinates over convex polygons. Adv. Comput. Math. 2006, 24, 311–331. [Google Scholar] [CrossRef]
- Grill, W.M.; Craggs, M.D.; Foreman, R.D.; Ludlow, C.L.; Buller, J.L. Emerging clinical applications of electrical stimulation: Opportunities for restoration of function. J. Rehabil. Res. Dev. 2001, 38, 641–653. [Google Scholar]
- Grill, W.; Mortimer, J. Quantification of recruitment properties of multiple contact cuff electrodes. IEEE Trans. Rehabil. Eng. 1996, 4, 49–62. [Google Scholar] [CrossRef]
- Jensen, W.; Lawrence, S.; Riso, R.; Sinkjaer, T. Effect of initial joint position on nerve-cuff recordings of muscle afferents in rabbits. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 265–273. [Google Scholar] [CrossRef]
- Kobetic, R.; Triolo, R.J.; Marsolais, E.B. Muscle selection and walking performance of multichannel FES systems for am-bulation in paraplegia. IEEE Trans. Rehabil. Eng. 1997, 5, 23–29. [Google Scholar] [CrossRef]
- Lin, C.-C.K.; Liu, W.-C.; Chan, C.-C.; Ju, M.-S. Fuzzy control with amplitude/pulse-width modulation of nerve electrical stimulation for muscle force control. J. Neural Eng. 2012, 9, 026026. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Chen, S.; Lei, T.; Kim, Y.; Niu, S.; Wang, H.; Wang, X.; Foudeh, A.M.; Tok, J.B.-H.; et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 2019, 3, 58–68. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control Engineering, 3rd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1997. [Google Scholar]
- Rodri´guez, F.J.; Ceballos, D.; Schu¨ttler, M.; Valero, A.; Valderrama, E.; Stieglitz, T.; Navarro, X. Polyimide cuff electrodes for peripheral nerve stimulation. J. Neurosci. Methods 2000, 98, 105–118. [Google Scholar] [CrossRef]
- Peckham, P.H.; Knutson, J.S. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 2005, 7, 327–360. [Google Scholar] [CrossRef]
- Riso, R.; Mosallaie, F.; Jensen, W.; Sinkjaer, T. Nerve cuff recordings of muscle afferent activity from tibial and peroneal nerves in rabbit during passive ankle motion. IEEE Trans. Rehabil. Eng. 2000, 8, 244–258. [Google Scholar] [CrossRef]
- Sinkjaer, T. Integrating sensory nerve signals into neural prosthesis devices. Neuromodulation Technol. Neural Interface 2000, 3, 33–41. [Google Scholar] [CrossRef]
- Song, K.-I.; Chu, J.-U.; Park, S.E.; Hwang, D.; Youn, I. Ankle-angle estimation from blind source separated afferent activity in the sciatic nerve for closed-loop functional neuromuscular stimulation system. IEEE Trans. Biomed. Eng. 2016, 64, 834–843. [Google Scholar] [CrossRef]
- Song, K.-I.; Park, S.E.; Lee, S.; Kim, H.; Lee, S.H.; Youn, I. Compact optical nerve cuff electrode for simultaneous neural activity monitoring and optogenetic stimulation of peripheral nerves. Sci. Rep. 2018, 8, 15630. [Google Scholar] [CrossRef] [PubMed]
- Song, K.-I.; Seo, H.; Seong, D.; Kim, S.; Yu, K.J.; Kim, Y.-C.; Kim, J.; Kwon, S.J.; Han, H.-S.; Youn, I.; et al. Adaptive self-healing electronic epineurium for chronic bidirectional neural interfaces. Nat. Commun. 2020, 11, 1–10. [Google Scholar] [CrossRef]
- Stein, R.B.; Mushahwar, V. Reanimating limbs after injury or disease. Trends Neurosci. 2005, 28, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Tyler, D.; Durand, D. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 294–303. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, N.; Cao, Y.; Wang, F.; Wang, P.; Ma, Y.; Lu, B.; Hou, G.; Fang, Z.; Liang, Z.; et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 2019, 5, eaaw1066. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.G.; Nichols, N.B. Optimum settings for automatic controllers. Trans. J. Dyn. Sys. Meas. Control. 1993, 115, 220–222. [Google Scholar] [CrossRef]
- Koo, J.; MacEwan, M.R.; Kang, S.-K.; Won, S.M.; Stephen, M.; Gamble, P.; Xie, Z.; Yan, Y.; Chen, Y.-Y.; Shin, J.; et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 2018, 24, 1830–1836. [Google Scholar] [CrossRef] [PubMed]
- Hiendlmeier, L.; Zurita, F.; Vogel, J.; Del Duca, F.; Al Boustani, G.; Peng, H.; Kopic, I.; Nikić, M.; Teshima, T.F.; Wolfrum, B. 4D-Printed Soft and Stretchable Self-Folding Cuff Electrodes for Small-Nerve Interfacing. Adv. Mater. 2023, 35, e2210206. [Google Scholar] [CrossRef]
Inverse Recruitment Method | Joint Angle (°) | Performance Indices | |||
---|---|---|---|---|---|
Overshoot (%) | Rising Time (s) | Settling Time (s) | ITAE (Degree) | ||
Inverse isometric recruitment curve | 70 | 0 | 1.07 | 2.23 | 15.84 |
90 | 0 | 1.12 | 2.16 | 14.15 | |
110 | 0 | 1.75 | 1.97 | 24.13 | |
130 | 0 | 1.7 | 1.98 | 25.41 | |
Surface-based inverse recruitment model | 70 | 0 | 0.36 | 0.43 | 12.11 |
90 | 0 | 0.39 | 0.47 | 10.95 | |
110 | 2.5 | 0.25 | 1.57 | 8.21 | |
130 | 2.8 | 0.21 | 1.63 | 9.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Song, K.-I. Flexible Peripheral Nerve Interfacing Electrode for Joint Position Control in Closed-Loop Neuromuscular Stimulation. Micromachines 2024, 15, 594. https://doi.org/10.3390/mi15050594
Kim S, Song K-I. Flexible Peripheral Nerve Interfacing Electrode for Joint Position Control in Closed-Loop Neuromuscular Stimulation. Micromachines. 2024; 15(5):594. https://doi.org/10.3390/mi15050594
Chicago/Turabian StyleKim, Sia, and Kang-Il Song. 2024. "Flexible Peripheral Nerve Interfacing Electrode for Joint Position Control in Closed-Loop Neuromuscular Stimulation" Micromachines 15, no. 5: 594. https://doi.org/10.3390/mi15050594
APA StyleKim, S., & Song, K. -I. (2024). Flexible Peripheral Nerve Interfacing Electrode for Joint Position Control in Closed-Loop Neuromuscular Stimulation. Micromachines, 15(5), 594. https://doi.org/10.3390/mi15050594