Optimisation of Negative Fixed Charge Based Edge Termination for Vertical GaN Schottky Devices
Abstract
:1. Introduction
2. Simulation Structure
- Fixed negative charge concentration.
- Overlap of the implanted region under the Schottky contact .
- Width/extension of the implanted region outside the Schottky contact edge .
- Depth of implanted region .
- Impact of drift layer doping.
- Using a rectangular region of fixed charge.
- Using profile obtained from SIMS measurements.
3. Simulation Results and Discussions
3.1. Box Profile
3.2. SIMS Profile
- To emulate different implantation depths, the SIMS profile was scaled in depth while maintaining the peak concentration constant, as shown in Figure 7a. This is analogous to increasing the implant energy.
- To scale the concentration of fixed charges, the SIMS profile was scaled by the maximum of its absolute value and multiplied by , as shown in Figure 7b. Here, is the peak concentration and was taken between cm−3 and cm−3. This is analogous to scaling the implantation dose.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Udrea, F.; Wang, H. Multidimensional device architectures for efficient power electronics. Nat. Electron. 2022, 5, 723–734. [Google Scholar] [CrossRef]
- Chen, K.J.; Häberlen, O.; Lidow, A.; lin Tsai, C.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si power technology: Devices and applications. IEEE Trans. Electron Devices 2017, 64, 779–795. [Google Scholar] [CrossRef]
- Meneghesso, G.; Meneghini, M.; De Santi, C.; Zanoni, E. GaN-based lateral and vertical devices: Physical mechanisms limiting stability and reliability. In Proceedings of the 2019 Electron Devices Technology and Manufacturing Conference (EDTM), Singapore, 12–15 March 2019; pp. 68–70. [Google Scholar]
- Horii, T.; Miyazaki, T.; Saito, Y.; Hashimoto, S.; Tanabe, T.; Kiyama, M. High-breakdown-voltage GaN vertical schottky barrier diodes with field plate structure. Mater. Sci. Forum 2009, 615–617, 963–966. [Google Scholar] [CrossRef]
- Saitoh, Y.; Sumiyoshi, K.; Okada, M.; Horii, T.; Miyazaki, T.; Shiomi, H.; Ueno, M.; Katayama, K.; Kiyama, M.; Nakamura, T. Extremely low on-resistance and high breakdown voltage observed in Vertical GaN Schottky barrier diodes with high-mobility drift layers on low-dislocation-density GaN substrates. Appl. Phys. Express 2010, 3, 11–14. [Google Scholar] [CrossRef]
- Tanaka, N.; Hasegawa, K.; Yasunishi, K.; Murakami, N.; Oka, T. 50A vertical GaN Schottky barrier diode on a free-standing GaN substrate with blocking voltage of 790 V. Appl. Phys. Express 2015, 8, 071001. [Google Scholar] [CrossRef]
- Johnson, J.W.; Zhang, A.P.; Luo, W.B.; Ren, F.; Pearton, S.J.; Park, S.S.; Park, Y.J.; Chyi, J.I. Breakdown voltage and reverse recovery characteristics of free-standing GaN Schottky rectifiers. IEEE Trans. Electron Devices 2002, 49, 32–36. [Google Scholar] [CrossRef]
- Anderson, T.J.; Greenlee, J.D.; Feigelson, B.N.; Hite, J.K.; Kub, F.J.; Hobart, K.D. Improved Vertical GaN Schottky Diodes with Ion Implanted Junction Termination Extension. ECS J. Solid State Sci. Technol. 2016, 5, Q176–Q178. [Google Scholar] [CrossRef]
- Koehler, A.D.; Anderson, T.J.; Tadjer, M.J.; Nath, A.; Feigelson, B.N.; Shahin, D.I.; Hobart, K.D.; Kub, F.J. Vertical GaN Junction Barrier Schottky Diodes. ECS J. Solid State Sci. Technol. 2017, 6, Q10–Q12. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Pilla, M.; Pan, M.; Gao, X.; Jena, D.; Xing, H.G. Design and realization of GaN trench junction-barrier-Schottky-diodes. IEEE Trans. Electron Devices 2017, 64, 1635–1641. [Google Scholar] [CrossRef]
- Ozbek, A.M.; Baliga, B.J. Planar nearly ideal edge-termination technique for GaN devices. IEEE Electron Device Lett. 2011, 32, 300–302. [Google Scholar] [CrossRef]
- Ozbek, A.M.; Baliga, B.J. Finite-Zone Argon Implant Edge Termination for High-Voltage GaN Schottky Rectifiers. IEEE Electron Device Lett. 2011, 32, 1361–1363. [Google Scholar] [CrossRef]
- Xu, W.Z.; Fu, L.H.; Lu, H.; Ren, F.F.; Chen, D.J.; Zhang, R.; Zheng, Y.D. GaN Schottky barrier diodes with high-resistivity edge termination formed by boron implantation. Chin. Phys. Lett. 2013, 30, 057303. [Google Scholar] [CrossRef]
- Han, S.; Yang, S.; Sheng, K. High-Voltage and High-ION/IOFF Vertical GaN-on-GaN Schottky Barrier Diode with Nitridation-Based Termination. IEEE Electron Device Lett. 2018, 39, 572–575. [Google Scholar] [CrossRef]
- Guo, X.; Zhong, Y.; Chen, X.; Zhou, Y.; Su, S.; Yan, S.; Liu, J.; Sun, X.; Sun, Q.; Yang, H. Reverse leakage and breakdown mechanisms of vertical GaN-on-Si Schottky barrier diodes with and without implanted termination. Appl. Phys. Lett. 2021, 118, 243501. [Google Scholar] [CrossRef]
- Chen, C.-W.; Kuo, L.-Y.; Lai, Y.-C.; Hsin, Y.-m. Vertical GaN Schottky Barrier Diode Using Nitrogen Ion Implantation to Form a Donut-Shaped Channel. J. Electron. Mater. 2021, 50, 5453–5461. [Google Scholar] [CrossRef]
- Koné, S.; Cayrel, F.; Yvon, A.; Collard, E.; Alquier, D. DLTS analysis of high resistive edge termination technique-induced defects in GaN-based Schottky barrier diodes. Phys. Status Solidi (a) 2016, 213, 2364–2370. [Google Scholar] [CrossRef]
- Breckenridge, M.H.; Tweedie, J.; Reddy, P.; Guan, Y.; Bagheri, P.; Szymanski, D.; Mita, S.; Sierakowski, K.; Boćkowski, M.; Collazo, R.; et al. High Mg activation in implanted GaN by high temperature and ultrahigh pressure annealing. Appl. Phys. Lett. 2021, 118, 022101. [Google Scholar] [CrossRef]
- Feigelson, B.; Anderson, T.; Abraham, M.; Freitas, J.; Hite, J.; Eddy, C.; Kub, F. Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN. J. Cryst. Growth 2012, 350, 21–26. [Google Scholar] [CrossRef]
- Anderson, T.; Feigelson, B.; Kub, F.; Tadjer, M.; Hobart, K.; Mastro, M.; Hite, J.; Eddy, C., Jr. Activation of Mg implanted in GaN by multicycle rapid thermal annealing. Electron. Lett. 2014, 50, 197–198. [Google Scholar] [CrossRef]
- Greenlee, J.D.; Feigelson, B.N.; Anderson, T.J.; Hite, J.K.; Hobart, K.D.; Kub, F.J. Symmetric multicycle rapid thermal annealing: Enhanced activation of implanted dopants in GaN. ECS J. Solid State Sci. Technol. 2015, 4, P382. [Google Scholar] [CrossRef]
- Khalfaoui, W.; Oheix, T.; Cayrel, F.; Benoit, R.; Yvon, A.; Collard, E.; Alquier, D. Gallium nitride surface protection during RTA annealing with a GaOxNy cap-layer. Semicond. Sci. Technol. 2016, 31, 045008. [Google Scholar] [CrossRef]
- Khalfaoui, W.; Oheix, T.; El-Zammar, G.; Benoit, R.; Cayrel, F.; Faulques, E.; Massuyeau, F.; Yvon, A.; Collard, E.; Alquier, D. Impact of rapid thermal annealing on Mg-implanted GaN with a SiOx/AlN cap-layer. Phys. Status Solidi (a) 2017, 214, 1600438. [Google Scholar] [CrossRef]
- Roccaforte, F.; Giannazzo, F.; Greco, G. Ion implantation doping in silicon carbide and gallium nitride electronic devices. Micro 2022, 2, 23–53. [Google Scholar] [CrossRef]
- Chen, K.J. Fluorine plasma ion implantation technology: A new dimension in GaN device processing. In Proceedings of the International Conference on Solid-State and Integrated Circuits Technology Proceedings, ICSICT, Beijing, China, 20–23 October 2008; pp. 1074–1077. [Google Scholar] [CrossRef]
- Hamady, S.; Morancho, F.; Beydoun, B.; Austin, P.; Gavelle, M. A new concept of enhanced-mode GaN HEMT using fluorine implantation in the GaN layer. In Proceedings of the 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, France, 2–6 September 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, J.; Tong, X.; Zhang, S.; Cheng, Z.; Zhang, L.; Zheng, P.; Chen, F.X.; Wang, R.; Zhang, Y.; Tan, W. Experimental and theoretical study on device-processing-incorporated fluorine in AlGaN/GaN heterostructures. AIP Adv. 2020, 10, 065122. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Andrieiev, O.; Vorobiov, M.; Demchenko, D.O.; McEwen, B.; Shahedipour-Sandvik, S. Photoluminescence from GaN Implanted with Be and F. Phys. Status Solidi (B) Basic Res. 2023, 260, 2300131. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Gu, H.; Zhang, Y.; Wang, W.; Xiong, R.; Xu, K. High-voltage vertical GaN-on-GaN Schottky barrier diode using fluorine ion implantation treatment. AIP Adv. 2019, 9, 055016. [Google Scholar] [CrossRef]
- Han, S.; Yang, S.; Sheng, K. Fluorine-implanted termination for vertical GaN schottky rectifier with high blocking voltage and low forward voltage drop. IEEE Electron Device Lett. 2019, 40, 1040–1043. [Google Scholar] [CrossRef]
- Yin, R.; Li, Y.; Wen, C.P.; Fu, Y.; Hao, Y.; Wang, M.; Shen, B. High Voltage Vertical GaN-on-GaN Schottky Barrier Diode with High Energy Fluorine Ion Implantation Based on Space Charge Induced Field Modulation (SCIFM) Effect. In Proceedings of the International Symposium on Power Semiconductor Devices and ICs, Vienna, Austria, 13–18 September 2020; Volume 2020-Septe, pp. 298–301. [Google Scholar] [CrossRef]
- Maurya, V.; Buckley, J.; Alquier, D.; Irekti, M.R.; Haas, H.; Charles, M.; Jaud, M.A.; Sousa, V. Electrical Transport Characteristics of Vertical GaN Schottky-Barrier Diode in Reverse Bias and Its Numerical Simulation. Energies 2023, 16, 5447. [Google Scholar] [CrossRef]
- Maurya, V.; Buckley, J.; Alquier, D.; Haas, H.; Irekti, M.R.; Kaltsounis, T.; Charles, M.; Rochat, N.; Sonneville, C.; Sousa, V. Influence of fluorine implantation on the physical and electrical characteristics of GaN-on-GaN vertical Schottky diode. Microelectron. Eng. 2023, 274, 111975. [Google Scholar] [CrossRef]
- Baliga, B.J. Breakdown Voltage. In Fundamentals of Power Semiconductor Devices; Springer International Publishing: Cham, Switzerland, 2019; pp. 89–170. [Google Scholar] [CrossRef]
- Cao, L.; Wang, J.; Harden, G.; Ye, H.; Stillwell, R.; Hoffman, A.J.; Fay, P. Experimental characterization of impact ionization coefficients for electrons and holes in GaN grown on bulk GaN substrates. Appl. Phys. Lett. 2018, 112, 262103. [Google Scholar] [CrossRef]
- Nishimura, T.; Kachi, T. Simulation of channeled implantation of magnesium ions in gallium nitride. Appl. Phys. Express 2021, 14, 116502. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, L.; Cheng, C.; Beling, C.; Chen, K. Defect formation and annealing behaviors of fluorine-implanted GaN layers revealed by positron annihilation spectroscopy. Appl. Phys. Lett. 2009, 94, 061910. [Google Scholar] [CrossRef]
- Chen, K.J.; Yuan, L.; Wang, M.J.; Chen, H.; Huang, S.; Zhou, Q.; Zhou, C.; Li, B.K.; Wang, J.N. Physics of fluorine plasma ion implantation for GaN normally-off HEMT technology. In Proceedings of the 2011 International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 19.4.1–19.4.4. [Google Scholar] [CrossRef]
- Nishimura, T.; Ikeda, K.; Kachi, T. Channeled implantation of magnesium ions in gallium nitride for deep and low-damage doping. Appl. Phys. Express 2021, 14, 066503. [Google Scholar] [CrossRef]
Parameters | Symbols | Values |
---|---|---|
GaN bandgap | 3.44 eV | |
Relative permittivity | 9.7 | |
Electron mobility | 1200 cm2/V·s | |
Temperature | T | 300 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maurya, V.; Alquier, D.; El Amrani, M.; Charles, M.; Buckley, J. Optimisation of Negative Fixed Charge Based Edge Termination for Vertical GaN Schottky Devices. Micromachines 2024, 15, 719. https://doi.org/10.3390/mi15060719
Maurya V, Alquier D, El Amrani M, Charles M, Buckley J. Optimisation of Negative Fixed Charge Based Edge Termination for Vertical GaN Schottky Devices. Micromachines. 2024; 15(6):719. https://doi.org/10.3390/mi15060719
Chicago/Turabian StyleMaurya, Vishwajeet, Daniel Alquier, Mohammed El Amrani, Matthew Charles, and Julien Buckley. 2024. "Optimisation of Negative Fixed Charge Based Edge Termination for Vertical GaN Schottky Devices" Micromachines 15, no. 6: 719. https://doi.org/10.3390/mi15060719
APA StyleMaurya, V., Alquier, D., El Amrani, M., Charles, M., & Buckley, J. (2024). Optimisation of Negative Fixed Charge Based Edge Termination for Vertical GaN Schottky Devices. Micromachines, 15(6), 719. https://doi.org/10.3390/mi15060719