Study on 1550 nm Human Eye-Safe High-Power Tunnel Junction Quantum Well Laser
Abstract
:1. Introduction
2. Theoretical Analyses
2.1. Radiation Wavelength
2.2. Quantum Well Compositions
3. Device Structure
4. Results and Discussion
4.1. P-I-V, Spectrogram, and Temperature Drift Coefficient
4.2. Testing of Far-Field Spot
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Prince, K.; Ma, M.; Gibbon, T.B.; Neumeyr, C.; Rönneberg, E.; Ortsiefer, M.; Monroy, I.T. Free-running 1550 nm VCSEL for 10.7 Gb/s transmission in 99.7 km PON. Opt. Commun. Netw. 2011, 3, 399–403. [Google Scholar] [CrossRef]
- Boucher, J.F.; Callahan, J.J. Ultra-high-intensity 1550-nm single junction pulsed laser diodes. In Proceedings of the SPIE Defense, Security, and Sensing 2011, Orlando, FL, USA, 25 May 2011. [Google Scholar]
- Docquier, N.; Candel, S. Combustion control and sensors: A review. Prog. Energy Combust. Sci. 2002, 28, 107–150. [Google Scholar] [CrossRef]
- Lu, D.; Yang, Q.; Wang, H.; He, Y.; Qi, H.; Wang, H.; Zhao, L.; Wang, X. Review of Semiconductor distributed feedback lasers in the optical communication band. Chin. J. Lasers 2020, 47, 11–29. [Google Scholar]
- Zhu, S.; Shi, B.; Li, Q.; Lau, K.M. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt. Express 2018, 26, 14514–14523. [Google Scholar] [CrossRef]
- Schäfer, F.; Mayer, B.; Reithmaier, J.P.; Forchel, A. High-temperature properties of GaInAs/AlGaAs lasers with improved carrier confinement by short-period superlattice quantum well barriers. Appl. Phys. Lett. 1998, 73, 2863–2865. [Google Scholar] [CrossRef]
- Sato, S.; Satoh, S. 1.21 μm continuous-wave operation of highly strained GaInAs quantum well lasers on GaAs substrates. Jpn. J. Appl. Phys. 1999, 38, L990–L992. [Google Scholar] [CrossRef]
- Wang, W.I. Molecular beam epitaxial growth and material properties of GaAs and AIGaAs on Si (100). Appl. Phys. Lett. 1984, 44, 1149–1151. [Google Scholar] [CrossRef]
- Kenyon, A.J.; Trwoga, P.F.; Federighi, M.; Pitt, C.W. Optical properties of PECVD erbium-doped silicon-rich silica: Evidence for energy transfer between silicon microclusters and erbium ions. J. Phys. Condens. Mat. 1994, 6, L319–L324. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Y.; Xu, J.; Wei, D.; Sun, H.; Xu, L.; Wang, T.; Li, W.; Chen, K. Improved emission efficiency of electroluminescent device containing nc-Si/SiO2 multilayers by using nano-patterned substrate. Opt. Express 2010, 18, 917–922. [Google Scholar] [CrossRef]
- Fang, A.W.; Park, H.; Cohen, O.; Jones, R.; Paniccia, M.J.; Bowers, J.E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 2006, 14, 9203–9210. [Google Scholar] [CrossRef]
- Wada, H.; Kamijoh, T. Room-temperature CW operation of InGaAsP lasers on Si fabricated by wafer bonding. IEEE Photonics Technol. Lett. 1996, 8, 173–175. [Google Scholar] [CrossRef]
- Norman, J.C.; Jung, D.; Zhang, Z.; Wan, Y.; Liu, S.; Shang, C.; Herrick, R.W.; Chow, W.W.; Gossard, A.C.; Bowers, J.E. A review of high-performance quantum dot lasers on silicon. IEEE J. Quantum Electron. 2019, 55, 1–11. [Google Scholar] [CrossRef]
- Arakawa, Y. Quantum dot lasers for silicon photonics. In Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, China, 25 October 2016. [Google Scholar]
- Deppe, D.G.; Holonyak, N.; Nam, D.W.; Hsieh, K.C.; Jackson, G.S.; Matyi, R.J.; Shichijo, H.; Epler, J.E.; Chung, H.F. Room-temperature continuous operation of p-n AlxGa1-xAsGaAs quantum well heterostructure lasers grown on Si. Appl. Phys. Lett. 1987, 51, 637–639. [Google Scholar] [CrossRef]
- Zhukov, A.E.; Kovsh, A.R. Quantum dot diode lasers for optical communication systems. Quantum Electron. 2008, 38, 409–423. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Zhou, Z.; Zhang, W. Developing bottlenecks of quasi-zero-dimensional quantum dot lasers. Laser Optoelectron. 2014, 51, 50–53. [Google Scholar]
- Ziel, J.P.; Tsang, W.T. Integrated multilayers GaAs lasers separated by tunnel junctions. Appl. Phys. Lett. 1982, 41, 499–501. [Google Scholar] [CrossRef]
- Beji, L.; Jani, B.; Gibart, P. High quality p+-n+-GaAs tunnel junction diode grown by atmospheric pressure metalorganic vapour phase epitaxy. Phys. Status. Solidi. (A) 2001, 183, 273–279. [Google Scholar] [CrossRef]
- Vilela, M.F.; Medelci, N.; Bensaoula, A.; Freundlich, A.; Renaud, P. First time demonstration of InP p/sup++//n/sup++/ tunnel junction. In Proceedings of the 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 5–9 December 1994. [Google Scholar]
- Mehta, M.; Feezell, D.; Buell, D.A.; Jackson, A.W.; Coldren, L.A.; Bowers, J.E. Electrical design optimization of single-mode tunnel-junction-based long-wavelength VCSELs. IEEE J. Quantum Electron. 2006, 42, 675–682. [Google Scholar] [CrossRef]
- Liao, K.; Wang, H.; Xiong, W.; Chen, J.; Zhou, Y.; Tian, K. Study on 1550 nm semiconductor laser used in OTDR. Semiconductor optoelectronics 2020, 41, 159–163. [Google Scholar]
- Aboujja, S.; Chu, D.; Bean, D. 1550 nm Triple junction laser diode for long range LiDAR. In Proceedings of the SPIE LASE, San Francisco, CA, USA, 4 March 2022. [Google Scholar]
- Ning, J.; Cao, C.; Li, Y.; Jiang, H.; Zhang, H.; Chen, H.; Fang, Y. Study on epitaxial materials of hign-power 1550 nm double stacks tunnel cascade lasers. China Stand. 2024, S1, 347–352. [Google Scholar]
- Xiong, D.; Guo, W.; Guo, X.; Liu, H.; Liao, W.; Liu, W.; Zhang, Y.; Cao, Y.; Tan, M. Simulation and fabrication of 1.55 μm AlGalnAs/InP quantum well lasers with low beam divergence. J. Infrared Millim. Waves 2019, 38, 412–418. [Google Scholar]
- Ellafi, D.; Iakovlev, V.; Sirbu, A.; Suruceanu, G.; Mickovic, Z.; Caliman, A.; Mereuta, A.; Kapon, E. Control of cavity lifetime of 1.5 µm wafer-fused VCSELs by digital mirror trimming. Opt. Express 2014, 22, 32180–32187. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z. Research on 1550 nm High Power Pulsed Semiconductor Lasers. Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2018. [Google Scholar]
- Eddie, H.L. Material parameters of InGaAsP and InAlGaAs systems for use in quantum well structures at low and room temperatures. Physica E 2000, 5, 215–273. [Google Scholar]
- Chen, J.; Liao, K.; Xiong, Y.; Zhou, Y.; Liu, S. Fabrication of high-power single tunnel junction semiconductor lasers. Semicond. Optoelectron. 2018, 39, 345–349. [Google Scholar]
Parameters | Unit | AlAs | GaAs | InAs | InP |
---|---|---|---|---|---|
Lattice constant | a (Å) | 5.660 | 5.6533 | 6.0584 | 5.8688 |
Elastic hardness constant | C11 (1011 dyn/cm2) | 12.5 | 11.879 | 8.329 | 10.11 |
Elastic hardness constant | C12 (1011 dyn/cm2) | 5.34 | 5.376 | 4.526 | 5.61 |
Static distortion potential of the conduction band | ac (eV) | −5.64 | −7.17 | −5.08 | −5.04 |
Valence band static distortion potential | av (eV) | 2.47 | 1.16 | 1.00 | 1.27 |
Valence band tangent distortion potential | b (eV) | −1.5 | −1.7 | −1.8 | −1.7 |
Parameters of valence band | γ 1 | 3.45 | 6.8 | 20.4 | 4.95 |
γ 2 | 0.68 | 1.9 | 8.3 | 1.65 | |
γ 3 | 1.29 | 2.73 | 9.1 | 2.35 | |
Electronic effective mass | me/mo | 0.15 | 0.067 | 0.023 | 0.077 |
Heavy hole effective mass | mhh/mo | 0.79 | 0.50 | 0.40 | 0.60 |
Light hole effective mass | mlh/mo | 0.15 | 0.076 | 0.025 | 0.12 |
Number | Layers | Materials | Thickness (μm) | Doping (cm−3) |
---|---|---|---|---|
20 | p+-Contact | In0.22Ga0.78As | 50 nm | Be, 2 × 1019 |
19 | p-Smooth | In0.22Ga0.78As0.92P0.08 | 0.2 | Be, 5 × 1018 |
18 | p-Cladding | InP | 1.2 | Be, 5 × 1018 |
17 | Waveguiding | In0.22Al0.78As | 0.25 | undoped |
16 | QW | Al0.08Ga0.24In0.68As/ Al0.13Ga0.43In0.44As | 7 nm/ 20 nm | undoped |
15 | Waveguiding | In0.22Al0.78As | 0.25 | undoped |
14 | n-Cladding | InP | 1.2 | Si, 1 × 1018 |
13 | Tunnel junction | InP (n++) | 10 nm | Si, 5 × 1019 |
In0.22Al0.78As (p++) | 5 nm | Be, 1 × 1020 | ||
In0.22Al0.78As (p+) | 10 nm | Be, 1 × 1019 | ||
12 | p-Cladding | InP | 1.2 | Be, 5 × 1017 |
11 | Waveguiding | In0.22Al0.78As | 0.25 | undoped |
10 | QW | Al0.08Ga0.24In0.68As/Al0.13Ga0.43In0.44As | 7 nm/20 nm | undoped |
9 | Waveguiding | In0.22Al0.78As | 0.25 | undoped |
8 | n-Cladding | InP | 1.2 | Si, 1 × 1018 |
7 | Tunnel junction | InP (n++) | 10 nm | Si, 5 × 1019 |
In0.22Al0.78As (p++) | 5 nm | Be, 1 × 1020 | ||
In0.22Al0.78As (p+) | 10 nm | Be, 1 × 1019 | ||
6 | Etching stop | In0.22Ga0.78As0.92P0.08 | 0.2 | Be, 5 × 1017 |
5 | p-Cladding | InP | 1.2 | Be, 5 × 1017 |
4 | Waveguiding | In0.22Al0.78As | 0.25 | undoped |
3 | QW | Al0.08Ga0.24In0.68As/Al0.13Ga0.43In0.44As | 7 nm/20 nm | undoped |
2 | Waveguiding | In0.22Al0.78As | 0.25 | undoped |
1 | n-Cladding | InP | 0.5 | Si, 1 × 1018 |
Substrate | InP | 300 | Si, 1 × 1018 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Xu, D.; Ma, X.; Li, Z.; Qu, Y.; Qiao, Z.; Liu, G.; Zhao, Z.; Zeng, L.; Chen, H.; et al. Study on 1550 nm Human Eye-Safe High-Power Tunnel Junction Quantum Well Laser. Micromachines 2024, 15, 1042. https://doi.org/10.3390/mi15081042
Wu Q, Xu D, Ma X, Li Z, Qu Y, Qiao Z, Liu G, Zhao Z, Zeng L, Chen H, et al. Study on 1550 nm Human Eye-Safe High-Power Tunnel Junction Quantum Well Laser. Micromachines. 2024; 15(8):1042. https://doi.org/10.3390/mi15081042
Chicago/Turabian StyleWu, Qi, Dongxin Xu, Xuehuan Ma, Zaijin Li, Yi Qu, Zhongliang Qiao, Guojun Liu, Zhibin Zhao, Lina Zeng, Hao Chen, and et al. 2024. "Study on 1550 nm Human Eye-Safe High-Power Tunnel Junction Quantum Well Laser" Micromachines 15, no. 8: 1042. https://doi.org/10.3390/mi15081042
APA StyleWu, Q., Xu, D., Ma, X., Li, Z., Qu, Y., Qiao, Z., Liu, G., Zhao, Z., Zeng, L., Chen, H., Li, L., & Li, L. (2024). Study on 1550 nm Human Eye-Safe High-Power Tunnel Junction Quantum Well Laser. Micromachines, 15(8), 1042. https://doi.org/10.3390/mi15081042