Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors
Abstract
:1. Introduction
2. Properties of MPcs
3. Mechanisms and Factors Influencing the Improved Performance of MPcs as Biosensors
4. Pc Composite Materials for Biosensors
4.1. Polymeric Pc Materials
4.2. Pc-Based Hybrid Composites
- (a)
- Combining MPc with carbon materials in a hybrid composite overcomes the MPc aggregation issue and enhances biosensor sensitivity [55].
- (b)
- An 18 п-electron system in MPc combined with carbon materials results in the optimization of hybrid composites with high porosity, surface area, and conductivity. This contributes to improved specificity in detecting biomolecules and enhances selective detection [56].
- (c)
- (d)
- Carbon materials in hybrid composites solve the stacking arrangement issue in MPc and improve dispersion, diffusion, and adsorption to overcome issues related to long-term stability [59].
- (e)
5. Fabrication of Hybrid Pc in Three-Electrode System
6. Conclusions, Challenges, and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Kulkarni, M.B.; Ayachit, N.H.; Aminabhavi, T.M. Biosensors and Microfluidic Biosensors: From Fabrication to Application. Biosensors 2022, 12, 543. [Google Scholar] [CrossRef]
- Abid, H.; Mohd, J.; Ravi, P.S.; Suman, R.; Rab, S. Biosensors applications in medical field: A brief review. Sens. Int. 2021, 2, 202. [Google Scholar] [CrossRef]
- Mujawar, M.A.; Gohel, H.; Bhardwaj, S.K.; Srinivasan, S.; Hickman, N.; Kaushik, A. Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Mater. Today Chem. 2020, 17, 100306. [Google Scholar] [CrossRef]
- Katey, B.; Ioana, V.; Anita, N.P.; Alexandrina, U. A Review of Biosensors and Their Applications. ASME Open J. Eng. 2023, 2, 020201. [Google Scholar] [CrossRef]
- Thevenot, D.R.; Toth, K.; Durst, R.A.; Wilson, G.S. Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 1999, 71, 2333–2348. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef]
- Shivalingayya; Preeti, R.K.; Sangappa, K.G.; Shashidhar; Ashajyoti, C.; Arunkumar, L. Multifunctional Nanoparticles for Biomedical Applications. J. Chem. Biol. Phys. Sci. 2022, 12, 410–422. [Google Scholar] [CrossRef]
- Costa, P.; Nunes-Pereira, J.; Oliveira, J.; Silva, J.; Moreira, J.A.; Carabineiro, S.A.C.; Buijnsters, J.G.; Lanceros-Mendez, S. High-performance graphene-based carbon nanofiller/polymer composites for piezoresistive sensor applications. Compos. Sci. Technol. 2017, 153, 241–252. [Google Scholar] [CrossRef]
- Campaña, A.; Florez, S.; Noguera, M.; Fuentes, O.; Ruiz, P.P.; Cruz, J.; Osma, J. Enzyme-based electrochemical biosensors for microfluidic platforms to detect pharmaceutical residues in wastewater. Biosensors 2019, 9, 41. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, J.; Kim, S.; Min, D.H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv. Rev. 2016, 105, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Basova, T.V.; Ray, A.K. Review—Hybrid materials based on phthalocyanines and metal nanoparticles for chemi-resistive and electrochemical sensors: A Mini-Review. ECS J. Solid State Sci. Technol. 2020, 9, 061001. [Google Scholar] [CrossRef]
- Kuntoji, G.; Kousar, N.; Gaddimath, S.; Koodlur Sannegowda, L. Macromolecule–Nanoparticle-Based Hybrid Materials for Biosensor Applications. Biosensors 2024, 14, 277. [Google Scholar] [CrossRef]
- Soto, D.; Orozco, J. Hybrid Nanobioengineered Nanomaterial-Based Electrochemical Biosensors. Molecules 2022, 27, 3841. [Google Scholar] [CrossRef]
- Huai-Song, W. Metal–organic frameworks for biosensing and bioimaging applications. Coord. Chem. Rev. 2017, 349, 139–155. [Google Scholar] [CrossRef]
- Keshavananda Prabhu, C.P.; Aralekallu, S.; Palanna, M.; Sajjan, V.; Renuka, B.; Sannegowda, L.K. Novel polymeric zinc phthalocyanine for electro-oxidation and detection of ammonia. J. Appl. Electrochem. 2022, 52, 325–338. [Google Scholar] [CrossRef]
- Manjunatha, N.; Lokesh, K.S. Hybrid composites based on phthalocyanine and carbonaceous materials for sensing applications: A review. Int. J. Biosens. Bioelectron. 2021, 7, 84–89. [Google Scholar] [CrossRef]
- Jipei, Y.; Nikolai, G.; Alexander, E. Application of Polymer Quantum Dot-Enzyme Hybrids in the Biosensor Development and Test Paper Fabrication. Anal. Chem. 2012, 84, 5047–5052. [Google Scholar] [CrossRef]
- Skladal, P.; Mascini, M. Sensitive detection of pesticides using amperometric sensors based on cobalt phthalocyanine-modified composite electrodes and immobilized choline esterases. Biosens. Bioelectron. 1992, 7, 335–343. [Google Scholar] [CrossRef]
- Lv, N.; Li, Q.; Zhu, H.; Mu, S.; Luo, X.; Ren, X.; Liu, X.; Li, S.; Cheng, C.; Ma, T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. Adv. Sci. 2023, 10, e2206239. [Google Scholar] [CrossRef]
- Aggas, J.R.; Guiseppi-Elie, A. Responsive Polymers in the Fabrication of Enzyme-Based Biosensors. In Biomaterials Science; Academic Press: Cambridge, MA, USA, 2020; pp. 1267–1286. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Rahmani, E.; Rajabzadeh-Khosroshahi, M.; Samadi, A.; Behzadmehr, R.; Rahdar, A.; Ferreira, L.F.R. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J. Drug Deliv. Sci. Technol. 2023, 80, 104156. [Google Scholar] [CrossRef]
- Zhang, Z.; Lou, Y.; Guo, C.; Jia, Q.; Song, Y.; Tian, J.; Zhang, S.; Wang, M.; He, L.; Du, M. Metal–organic frameworks (MOFs) based chemosensors/biosensors for analysis of food contaminants. Trends Food Sci. Technol. 2021, 118, 569–588. [Google Scholar] [CrossRef]
- Basova, T. Phthalocyanine and Porphyrin Derivatives and Their Hybrid Materials in Optical Sensors Based on the Phenomenon of Surface Plasmon Resonance. Chemosensors 2024, 12, 56. [Google Scholar] [CrossRef]
- Sorokin, A.B. Phthalocyanine metal complexes in catalysis. Chem. Rev. 2013, 9, 8152–8191. [Google Scholar] [CrossRef]
- Zagal, J.H.; Bedioui, F.; Dodelet, J.P. N4-Macrocyclic Complexes; Springer Science & Business Media: Berlin, Germany, 2007. [Google Scholar]
- Hong, Q.; Chen, S. Facile one-step fabrication of phthalocyanine–graphene–bacterial–cellulose nanocomposite with superior catalytic performance. Nanomaterials 2020, 10, 1673. [Google Scholar] [CrossRef]
- Song, Y.; Meng, Y.; Chen, K.; Huang, G.; Li, S.; Hu, L. Novel electrochemical sensing strategy for ultrasensitive detection of tetracycline based on porphyrin/metal phthalocyanine-covalent organic framework. Bioelectrochemistry 2024, 156, 108630. [Google Scholar] [CrossRef] [PubMed]
- Gaddimath, S.; Payamalle, S.; Channabasavana Hundi Puttaningaiah, K.P.; Hur, J. Recent Advances in pH and Redox Responsive Polymer Nanocompositesfor Cancer Therapy. J. Compos. Sci. 2024, 8, 28. [Google Scholar] [CrossRef]
- Sun, G.; Wei, X.; Zhang, D.; Huang, L.; Liu, H.; Fang, H. Immobilization of Enzyme Electrochemical Biosensors and Their Application to Food Bioprocess Monitoring. Biosensors 2023, 13, 886. [Google Scholar] [CrossRef]
- Eivazzadeh-Keihan, R.; Noruzi, E.B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M.G.; Hashemi, S.M.; Javanshir, S.; Cohan, R.A.; et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183. [Google Scholar] [CrossRef]
- Kamalasekaran, K.; Magesh, V.; Atchudan, R.; Arya, S.; Sundramoorthy, A.K. Development of Electrochemical Sensor Using Iron (III) Phthalocyanine/Gold Nanoparticle/Graphene Hybrid Film for Highly Selective Determination of Nicotine in HumanSalivary Samples. Biosensors 2023, 13, 839. [Google Scholar] [CrossRef]
- Mahesh, M.S.; Manasa, G.; Ronald, J.M.; Mondal, K.; Shetti, N.P. Fundamentals of bio-electrochemical sensing. Chem. Eng. J. Adv. 2023, 16, 100516. [Google Scholar] [CrossRef]
- Mikuła, E. Recent Advancements in Electrochemical Biosensors for Alzheimer’s Disease Biomarkers Detection. Curr. Med. Chem. 2021, 28, 4049–4073. [Google Scholar] [CrossRef]
- Hwang, H.S.; Jae, W.J.; Yoong, A.K.; Mincheol, C. Carbon Nanomaterials as Versatile Platforms for Biosensing Applications. Micromachines 2020, 11, 814. [Google Scholar] [CrossRef]
- Kim, J.; Park, G.; Lee, S.; Hwang, S.W.; Min, N.; Lee, K.M. Single Wall Carbon Nanotube Electrode SystemCapable of Quantitative Detection of CD4+ T Cells. Biosens. Bioelectron. 2017, 90, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jia, W.; Wu, Y.; Wang, F.; Kui, L. Direct Fabrication of 3D Graphene–Multi Walled Carbon Nanotubes Network and Its Application for Sensitive Electrochemical Determination of Hyperin. Int. J. Electrochem. Sci. 2019, 14, 481–493. [Google Scholar] [CrossRef]
- Shantharaja; Giddaerappa; Sannegowda, L.K. Phthalocyanine based metal-organic frame work with carbon nanoparticles as hybrid catalyst for oxygen reduction reaction. Electrochim. Acta 2023, 456, 142405. [Google Scholar] [CrossRef]
- Leznoff, C.C.; Lever, A. Phthalocyanines: Properties and Applications; VCH Publishers: New York, NY, USA, 1993; Volume 4. [Google Scholar] [CrossRef]
- Giddaerappa; Nemakal, M.; Shantharaja; Mirabbos, H.; Lokesh, K.S. Tetraphenolphthalein Cobalt(II) Phthalocyanine Polymer Modified with Multiwalled Carbon Nanotubes as an Efficient Catalyst for the Oxygen Reduction Reaction. ACS Omega 2022, 7, 14291–14304. [Google Scholar] [CrossRef]
- Ozoemena, K.I.; Nyokong, T. Novel amperometric glucose biosensor based on an ether-linked cobalt(II) phthalocyanine–cobalt(II) tetraphenylporphyrin pentamer as a redox mediator. Electrochim. Acta 2006, 51, 5131. [Google Scholar] [CrossRef]
- Liu, D.; Long, Y.T. Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces 2015, 4, 24063–24068. [Google Scholar] [CrossRef]
- Pari, M.; Reddy, K.R.V.; Chandrakala, K.B. Amperometric determination of dopamine based on an interface platform comprising tetra-substituted Zn2+ phthalocyanine film layer with embedment of reduced graphene oxide. Sens. Actuators A Phys. 2020, 316, 112377. [Google Scholar] [CrossRef]
- Sarvajith, M.S.; Harish, M.; Nimbegondi, K.; Mruthyunjayachari, C.D.; Fasiulla, K. Synthesis and Electrochemical Investigation of Tetra Amino Cobalt (II) Phthalocyanine Functionalized Polyaniline Nanofiber for the Selective Detection of Dopamine. Electroanalysis 2020, 32, 1807–1817. [Google Scholar] [CrossRef]
- Veeresh, A.S.; Imadadulla, M.; Manjunatha, N.; Shambulinga, A.; Hemantha, K.K.R.; Swamy, S.; Lokesh, K.S. Synthesis and electropolymerization of cobalt tetraaminebenzamidephthalocyanine macrocycle for the amperometric sensing of dopamine. J. Electroanal. Chem. 2019, 838, 33–40. [Google Scholar] [CrossRef]
- Imadadulla, M.; Manjunatha, N.; Shambhulinga, A.; Veeresh, A.S.; Divakara, T.R.; Manjunatha, P.; Keshavanandaprabu, C.P.; Lokesh, K.S. Phthalocyanine sheet polymer based amperometric sensor for the selective detection of 2,4-dichlorophenol. J. Electroanal. Chem. 2020, 871, 114292. [Google Scholar] [CrossRef]
- Manjunatha, N.; Giddaerappa; Shantharaja; Veeresh, A.S.; Lokesh, K.S. Novel amide coupled phthalocyanines: Synthesis and structure-property relationship for electrocatalysis and sensing of hydroquinone. J. Electroanal. Chem. 2021, 898, 115657. [Google Scholar] [CrossRef]
- Sajjan, V.A.; Aralekallu, S.; Nemakal, M.; Palanna, M.; Prabhu, C.K.; Sannegowda, L.K. Nanomolar detection of lead using electrochemical methods based on a T novel phthalocyanine. Inorganica Chim. Acta 2020, 506, 119564. [Google Scholar] [CrossRef]
- Shantharaja; Nemakal, M.; Giddaerappa; Sannegowda, L.K. Biocompatible polymeric pyrazolopyrimidinium cobalt(II) phthalocyanine: An efficient electroanalytical platform for the detection of l-arginine. Sens. Actuators A 2021, 324, 112690. [Google Scholar] [CrossRef]
- Sajjan, V.A.; Aralekallu, S.; Nemakal, M.; Palanna, M.; Prabhu, C.K.; Sannegowda, L.K. Nanomolar detection of 4-nitrophenol using Schiff-base phthalocyanine. Microchem. J. 2021, 164, 105980. [Google Scholar] [CrossRef]
- Keshavananda Prabhu, C.P.; Nemakal, M.; Aralekallu, S.; Mohammed, I.; Shivaprasad, K.H.; Amshumali, M.K.; Lokesh, K.S. Synthesis and characterization of novel imine substituted phthalocyanine for sensing of L-cysteine. J. Electroanal. Chem. 2019, 834, 30–137. [Google Scholar] [CrossRef]
- Gonçalo, D.; João, C.; Bruno, V.; Leticia, G.; Carina, A.; Maria, A.; João, R.; Pedro, V.B. Noble Metal Nanoparticles for Biosensing Applications. Sensors 2012, 12, 1657–1687. [Google Scholar] [CrossRef]
- Liao, Z.; Yao, L.; Liu, Y.; Wu, Y.; Wang, Y.; Ning, G. Progress on nanomaterials based-signal amplification strategies for the detection of zearalenone. Biosens. Bioelectron. 2021, 9, 100084. [Google Scholar] [CrossRef]
- Sumitha, M.S.; Xavier, T.S. Recent advances in electrochemical biosensors—A brief review. Hybrid Adv. 2023, 2, 100023. [Google Scholar] [CrossRef]
- Yin, D.; Liu, J.; Bo, X.; Li, M.; Guo, L. Porphyrinic metal-organic framework/macroporous carbon composites for electrocatalytic applications. Electrochim. Acta 2017, 247, 41–49. [Google Scholar] [CrossRef]
- Ullah, S.; Ur Rehman, A.; Najam, T.; Hossain, I.; Anjum, S.; Ali, R.; Shahid, M.U.; Ahmad Shah, S.S.; Nazir, M.A. Advances in metal-organic framework@activated carbon (MOF@AC) composite materials: Synthesis, characteristics and applications. J. Ind. Eng. Chem. 2024, 137, 87–105. [Google Scholar] [CrossRef]
- Channabasavana Hundi Puttaningaiah, K.P.; D Ramegowda, S.; Hur, J. Polymer Tetrabenzimidazole Aluminum Phthalocyanine Complex with Carbon Nanotubes: A Promising Approach for Boosting Lithium-Ion Battery Anode Performance. ACS Appl. Energy Mater. 2024, 7, 6793–6806. [Google Scholar] [CrossRef]
- Gonçalves, J.M.; Bernardo, A.I.; Paulo, R.M.; Lúcio, A. Recent advances in electroanalytical drug detection by porphyrin/phthalocyanine macrocycles: Developments and future perspectives. Analyst 2021, 146, 365–381. [Google Scholar] [CrossRef]
- Nobuhle, N.; Sithi, M.; Tebello, N. Electrocatalytic Activity of Cobalt Phthalocyanines Revisited: Effect of the Number of Oxygen Atoms and Conjugation to Carbon Nanomaterials. Electrocatalysis 2021, 12, 499–515. [Google Scholar] [CrossRef]
- Liu, H.; Guo, K.; Lv, J.; Gao, Y.; Duan, C.; Deng, L.; Zhu, Z. A novel nitrite biosensor based on the direct electrochemistry of horseradish peroxidase immobilized on porous Co3O4 nanosheets and reduced graphene oxide composite modified electrode. Sens. Actuators B Chem. 2017, 238, 249–256. [Google Scholar] [CrossRef]
- Bounegru, A.V.; Apetrei, C. Development of a Novel Electrochemical Biosensor Based on Carbon Nanofibers–Cobalt Phthalocyanine–Laccase for the Detection of p-Coumaric Acid in Phytoproducts. Int. J. Mol. Sci. 2021, 22, 9302. [Google Scholar] [CrossRef]
- Nemakal, M.; Aralekallu, S.; Mohammed, I.; Swamy, S.; Sannegowda, L.K. Electropolymerized octabenzimidazole phthalocyanine as an amperometric sensor for hydrazine. J. Electroanal. Chem. 2019, 839, 238–246. [Google Scholar] [CrossRef]
- Jilani, B.S.; Mounesh; Malathesh, P.; Mruthyunjayachari, C.D.; Reddy, K.V. Cobalt (II) tetra methyl-quinoline oxy bridged phthalocyanine carbon nano particles modified glassy carbon electrode for sensing nitrite: A voltammetric study. Mater. Chem. Phys. 2020, 239, 121920. [Google Scholar] [CrossRef]
- Shambhulinga, A.; Imadadulla, M.; Manjunatha, N.; Palanna, M.; Sannegowda, L.K. Synthesis of novel azo group substituted polymeric phthalocyanine for amperometric sensing of nitrite. Sens. Actuators B Chemical. 2019, 282, 417–425. [Google Scholar] [CrossRef]
- Manjunatha, N.; Shambhulinga, A.; Imadadulla, M.; Pari, M.; Reddy, K.V.; Sannegowda, L.K. Nanomolar detection of 4-aminophenol using amperometric sensor based on a novel phthalocyanine. Electrochim. Acta 2019, 318, 342–353. [Google Scholar] [CrossRef]
- Manjunatha, N.; Shambhulinga, A.; Imadadulla, M.; Keshavananda Prabhu, C.P.; Lokesh, K.S. Chemisorbed palladium phthalocyanine for simultaneous determination of biomolecules. Microchem. J. 2018, 143, 82–91. [Google Scholar] [CrossRef]
- Reddy, K.R.V. Decorated CoPc with appliance of MWCNTs on GCE: Sensitive and reliable electrochemical investigation of heavy metals. Microchem. J. 2021, 160, 05610. [Google Scholar] [CrossRef]
- Jilani, B.S.; Pari, M.; Reddy, K.V.; Lokesh, K.S. Venugopala Reddy.; K.S. Lokesh. Simultaneous and sensitive detection of ascorbic acid in presence of dopamine using MWCNTs-decorated cobalt (II) phthalocyanine modified GCE. Microchem. J. 2019, 147, 755–763. [Google Scholar] [CrossRef]
- Keshavanandaprabhu, C.P.; Manjunatha, N.; Shambhulinga, A.; Imadadulla, M.; Manjunatha, P.; Veeresh, A.S.; Akshitha, D.; Lokesh, K.S. A comparative study of carboxylic acid and benzimidazole phthalocyanines and their surface modification for dopamine sensing. J. Electroanal. Chem. 2019, 847, 113262. [Google Scholar] [CrossRef]
- Mania, V.; Huanga, S.T.; Devasenathipathy, R.; Yang, T.C.K. Electropolymerization of cobalt tetraamino-phthalocyanine at reduced graphene oxide for electrochemical determination of cysteine and hydrazine. RSC Adv. 2016, 6, 38463–38469. [Google Scholar] [CrossRef]
- Tang, C.; Umasankar, Y.; Chen, S.M. Simultaneous determination of adenine guanine and thymine at multi-walled carbon nanotubes incorporated with poly(new fuchsin) composite film. Anal. Chim. Acta 2009, 636, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Keshavananda, C.P.; Kenkera, R.N.; Shambhulinga, A.; Shivalingayya; Lokesh, K.S. Novel polymeric cobalt tetrabenzimidazole phthalocyanine for nanomolar detection of hydrogen peroxide. RSC Sustain. 2023, 1, 128–138. [Google Scholar] [CrossRef]
- Imadadulla, M.; Manjunatha, N.; Veeresh, A.S.; Dayananda, B.P.; Lokesh, K.S. Electropolymerized film of cobalt tetrabenzimidazolephthalocyanine for the T amperometric detection of H2O2. J. Electroanal. Chem. 2018, 826, 96–103. [Google Scholar] [CrossRef]
- Gaddimath, S.; Chandrakala, K.B.; Lagashetty, A.; Dani, S.; Prabhu, C.K.; Giddaerappa; Sannegowda, L.K. Ilmenite-type NiTiO3 nanoparticles for oxygen evolution reaction. J. Appl. Electrochem. 2024, 1–18. [Google Scholar] [CrossRef]
- Keshavananada Prabhu, C.P.; Aralekallu, S.; Sajjan, V.A.; Palanna, M.; Kumar, S.; Sannegowda, L.K. Non-precious cobalt phthalocyanine-embedded iron ore electrocatalysts for hydrogen evolution reactions. Sustain. Energy Fuels 2021, 5, 1448–1457. [Google Scholar] [CrossRef]
Materials | Method | Analyte | LOD | Linear Range | Ref. |
---|---|---|---|---|---|
Zn(II)TBPc | Amperometry | DA | 6 nM | 20 nM–1.0 μM | [43] |
TACoPc/PANI | CV | DA | 0.064 μM | 20–200 μM | [44] |
Poly(CoTNBAPc) | Amperometry | DA | 20 nmol/L | 100–4000 nM/L | [45] |
CV | 20 nmol/L | 10–1000 nM | |||
CoTCAPc | CV | 2,4-dichlorophenol | 0.35 μM | 1–36 μM | [46] |
CoTAMFCAPc/GCE | CV | Hydroquinone | 0.066 | 0.2–2.2 μM | [47] |
Amperometry | 0.056 | 0.17–1.530 μM | |||
Poly(CoTBrIMPPc) | CV | Pb | 37 nmol/L | 10–1000 nM | [48] |
Amperometry | 180 nmol/L | 500–3000 nM/L | |||
Poly(CoTPzPyPc) | CV | L-arginine | 2.5 μM | 10–100 μM | [49] |
Amperometry | 0.6 μM | 2–60 μM | |||
CoTTIMPPc | CV | 4-nitrophenol | 38 nM | 100–1000 nM | [50] |
Amperometry | 30 nM | 100–900 nM | |||
Poly(CoTBrImPc) | CV | L- Cysteine | 3 nM | 10–100 nM | [51] |
Amperometry | 4 nM | 10–80 nM |
Material | Method | Analyte | LOD | Linear Range | Ref. |
---|---|---|---|---|---|
rGO/Poly(CoOBImPc) | CV | Hz | 0.033 μM | 0.1–0.9 μM | [62] |
CoTM-QOPc/CNP | CV | Nitrite | 0.033 μM | 0.1–350 μM | [63] |
Poly(TazoCoPc)/CNP | CV | Nitrite | 0.006 μM | 0.02–1 μM | [64] |
CoTBTCAPc/CNP | CV | 4-AP | 0.030 μM | 0.1–0.9 μM | [65] |
CoTELndCAPc/MWCNT | CV | Cd(II) | 5 nM | 100–1000 nM | [66] |
Pb(II) | 3 nM | 100–1000 nM | |||
PdTAPc/MWCNT | CV | AA | 1.0 μM | 3–24 μM | [67] |
DA | 0.6 μM | 2–16 μM | |||
CoTMBANAPc/MWCNT | CV | AA | 6.6 μM | 7.5–70 μM | [68] |
Poly(FeTBImPc)/CNP | CV | DA | 20 nM | 100–1000 nM | [69] |
RGO-pTACoPc | CV | L-cysteine | 0.018 μM | 0.05–2.0 μM | [70] |
MWCNT-PNF | CV | Adenine (AD) | 9.2 μM | 0.01–3.9 mM | [71] |
DPV | AD | 7.9 μM | 0.01–7.9 mM | ||
CV | Thymine (THY) | 19.3 μM | 0.02–7.7 mM | ||
DPV | THY | 16.8 μM | 0.02–15.7 mM | ||
CV | Guanine (GU) | 98.56 μM | 0.1–8.5 mM | ||
DPV | GU | 96.84 μM | 0.1–3.5 mM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Puttaningaiah, K.P.C.H.; Hur, J. Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors. Micromachines 2024, 15, 1061. https://doi.org/10.3390/mi15091061
Puttaningaiah KPCH, Hur J. Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors. Micromachines. 2024; 15(9):1061. https://doi.org/10.3390/mi15091061
Chicago/Turabian StylePuttaningaiah, Keshavananda Prabhu Channabasavana Hundi, and Jaehyun Hur. 2024. "Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors" Micromachines 15, no. 9: 1061. https://doi.org/10.3390/mi15091061
APA StylePuttaningaiah, K. P. C. H., & Hur, J. (2024). Recent Advances in Phthalocyanine-Based Hybrid Composites for Electrochemical Biosensors. Micromachines, 15(9), 1061. https://doi.org/10.3390/mi15091061