Recent Advances in Metal-Oxide-Based Photoresists for EUV Lithography
Abstract
:1. Introduction
2. Metal-Oxide-Based Photoresist Chemistry
2.1. Zinc-Based Inorganic Photoresist Mechanism
2.2. Tin–Oxygen Inorganic Photoresist Mechanism
2.3. IVB Group Inorganic Photoresist Mechanism
2.4. Absorptivity Comparison under EUV
3. Metal-Oxide-Based Photoresist Synthesis Techniques
3.1. Novel Synthesis Techniques for Metal Oxides and EUV Lithography Applications
3.1.1. Atomic Layer Deposition (ALD)
- Area-Selective Deposition (ASD) atomic layer deposition and its derivatives for extreme ultraviolet (EUV) photoresist applications
- o
- ASD is a strategic additive method utilized within the semiconductor industry to enhance device performance through precise material deposition. This technique, implementable via ALD or chemical vapor deposition (CVD), allows for the targeted growth of thin films on specific regions of a substrate, supporting applications such as selective epitaxial growth [31] and cobalt capping of copper [32] (Figure 5a). Recent advancements have expanded ASD’s application to post-development steps in EUV lithography, where selective deposition on EUV patterned resists significantly reduces defect densities and improves pattern fidelity [33,34] (Figure 5b).
- Vapor-Phase Infiltration (VPI)
- Molecular atomic layer deposition (MALD)
3.1.2. Non-Aqueous Sol–Gel
- Surfactant-Directed Fabrication of Metal Oxide Nanoparticles
- o
- Iron Oxide Nanoparticles: Achieving sizes from 6–13 nm in precise one-nanometer steps by manipulating surfactant concentrations and reaction conditions [51].
- o
- Ferrite Nanoparticles (): Shape control (cube-like and polyhedron-shaped) was achieved through non-hydrolytic reactions involving metal acetylacetonates, influenced by surfactant-to-iron ratios [52].
- o
- Solvent-Directed Fabrication of Metal Oxide Nanoparticles
- o
- Improved Product Purity: The absence of surfactants eliminates issues related to nanoparticle surface accessibility, crucial for applications in catalysis and sensing, as well as reduces potential toxicity concerns associated with surface-adsorbed surfactants.
- o
- Versatility of Metal Oxide Precursors and Solvents: The method accommodates a wide range of metal oxide precursors like metal halides, acetates, acetylacetonates, and alkoxides, as well as various solvents from oxygen-containing organic solvents (e.g., alcohols, ketones, aldehydes) to ‘inert’ solvents like toluene. This method’s flexibility permits tailored control over nanoparticle morphology and composition.
- o
- Control Over Crystal Growth and Morphology: Organic solvents and the organic species formed during the reaction act as capping agents, controlling crystal growth and influencing particle morphology. This selectivity is crucial for achieving anisotropic crystal growth and high crystallinity.
- o
- Halide-Free Synthesis Options: For applications where halide impurities are undesirable, solvent-controlled synthesis using non-halide precursors like metal acetates or alkoxides provides a clean alternative.
3.2. Novel Inorganic Metal-Oxide-Based Photoresists and Synthesis Processes
3.2.1. Zinc-Based Inorganic Photoresists
3.2.2. Tin–Oxygen Inorganic Photoresists
3.2.3. IVB Group Inorganic-Based Photoresists
- The same approach is used to prepare zirconium oxide nanoparticles starting from zirconium isopropoxide as a precursor instead of hafnium isopropoxide [67].
4. Characterization Techniques for Metal-Oxide-Based Photoresists
4.1. Spectroscopic Analysis
4.2. Microscopic Analysis
5. Performance Evaluation of Metal-Oxide-Based Photoresists
5.1. LWR Results and Spectroscopic Analyses of Zinc-Based Photoresist
5.2. Topographical and Chemical Analysis of Tin–Oxygen Inorganic Photoresists
5.3. Analysis of IV B Group Inorganic-Based Photoresists
6. Applications and Future Prospects
6.1. Zinc-Based Inorganic Photoresist in Nanofabrication and 3D Printing
6.1.1. Zinc-Based Photoresist for High-Resolution EUVL and Nanofabrication
6.1.2. Zinc-Based Photoresist for 3D Printing
6.2. Tin–Oxygen Cluster Inorganic Photoresist for High-Resolution Lithography
6.3. IVB Group Inorganic-Based Photoresist
6.3.1. Zirconium Hafnium Oxide Thin Film as CMOS-Compatible Pyroelectric Infrared Sensor
6.3.2. Zirconium Oxide for Ultrahigh-Speed Printing
6.4. Market Opportunities and Commercial Prospects
6.4.1. International Market
6.4.2. Commercial Prospect
6.5. Future Prospects
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kinoshita, H. History of extreme ultraviolet lithography. J. Vac. Sci. Technol. B 2005, 23, 2584–2588. [Google Scholar] [CrossRef]
- Tseng, L.-T.; Karadan, P.; Kazazis, D.; Constantinou, P.C.; Stock, T.J.Z.; Curson, N.J.; Schofield, S.R.; Muntwiler, M.; Aeppli, G.; Ekinci, Y. Resistless EUV lithography: Photon-induced oxide patterning on silicon. Sci. Adv. 2023, 9, eadf5997. [Google Scholar] [CrossRef]
- Ronse, K. Patterning Infrastructure Development for Advanced EUV Lithography: Continuing Dimensional Scaling Through EUV Lithography to Support Moore’s Law. IEEE Electron Device Lett. 2024, 2, 35–44. [Google Scholar] [CrossRef]
- Goldfarb, D.L. Evolution of patterning materials towards the Moore’s Law 2.0 Era. Jpn. J. Appl. Phys. 2022, 61, 1347–4065. [Google Scholar] [CrossRef]
- Lim, G.; Lee, K.; Choi, S.; Yoon, H.J. Organometallic and coordinative photoresist materials for EUV lithography and related photolytic mechanisms. Coord. Chem. Rev. 2023, 493, 215307. [Google Scholar] [CrossRef]
- Park, J.; Song, H.-J.; Nguyen, T.; Son, W.-J.; Kim, D.; Song, G.; Hong, S.-K.; Go, H.; Park, C.; Jang, I.; et al. Novel Mechanism-Based Descriptors for Extreme Ultraviolet-Induced Photoacid Generation: Key Factors Affecting Extreme Ultraviolet Sensitivity. Molecules 2023, 28, 6244. [Google Scholar] [CrossRef] [PubMed]
- Lawson, R.A.; Robinson, A.P.G. Chapter 1—Overview of Materials and Processes for Lithography. In Frontiers of Nanoscience; Robinson, A., Lawson, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 11, pp. 1–90. [Google Scholar]
- Fallica, R.; Haitjema, J.; Wu, L.; Castellanos, S.; Brouwer, A.M.; Ekinci, Y. Absorption coefficient of metal-containing photoresists in the extreme ultraviolet. J. Micro/Nanolithogr. MEMS MOEMS 2018, 17, 23505. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, H.; Wang, L.; Wu, X.; He, J.; Huang, W.; Ouyang, C.; Chen, D.; Keshta, B.E. Advanced lithography materials: From fundamentals to applications. Adv. Colloid Interface Sci. 2024, 329, 103197. [Google Scholar] [CrossRef]
- Naqvi, B.A.; Enomoto, S.; Machida, K.; Takata, Y.; Kozawa, T.; Muroya, Y.; De Gendt, S.; De Simone, D. Extreme Ultraviolet Lithographic Performance and Reaction Mechanism of Polymeric Resist─Utilizing Radical- and Acid-Amplified Cross-Linking. Chem. Mater. 2024, 36, 1459–1471. [Google Scholar] [CrossRef]
- Wang, D.; Xu, R.; Zhou, D.; Zhao, J.; Zhang, J.; Chen, P.; Peng, X. Zn-Ti oxo cluster photoresists for EUV Lithography: Cluster structure and lithographic performance. J. Chem. Eng. 2024, 493, 152315. [Google Scholar] [CrossRef]
- Schoot, J.V. Exposure Tool Development Toward Advanced EUV Lithography: A Journey of 40 Years Driving Moore’s Law. IEEE Electron Device Lett. 2024, 2, 8–22. [Google Scholar] [CrossRef]
- Sharma, E.; Rathi, R.; Misharwal, J.; Sinhmar, B.; Kumari, S.; Dalal, J.; Kumar, A. Evolution in Lithography Techniques: Microlithography to Nanolithography. J. Nanomater. 2022, 12, 2754. [Google Scholar] [CrossRef]
- Sharps, M.C.; Frederick, R.T.; Javitz, M.L.; Herman, G.S.; Johnson, D.W.; Hutchison, J.E. Organotin Carboxylate Reagents for Nanopatterning: Chemical Transformations during Direct-Write Electron Beam Processes. Chem. Mater. 2019, 31, 4840–4850. [Google Scholar] [CrossRef]
- Mattson, E.C.; Cabrera, Y.; Rupich, S.M.; Wang, Y.; Oyekan, K.A.; Mustard, T.J.; Halls, M.D.; Bechtel, H.A.; Martin, M.C.; Chabal, Y.J. Chemical Modification Mechanisms in Hybrid Hafnium Oxo-methacrylate Nanocluster Photoresists for Extreme Ultraviolet Patterning. Chem. Mater. 2018, 30, 6192–6206. [Google Scholar] [CrossRef]
- Jiang, J.; Chakrabarty, S.; Yu, M.; Ober, C.K. Metal Oxide Nanoparticle Photoresists for EUV Patterning. J. Photopolym. Sci. Tec. 2014, 27, 663–666. [Google Scholar] [CrossRef]
- Grenville, A.; Anderson, J.; Clark, B.; De Schepper, P.; Edson, J.; Greer, M.; Jiang, K.; Kocsis, M.; Meyers, S.; Stowers, J.; et al. Integrated Fab Process for Metal Oxide EUV Photoresist. In Proceedings of the SPIE Advanced Lithography 2015, San Jose, CA, USA, 20 March 2015. [Google Scholar]
- Luo, C.; Xu, C.; Lv, L.; Li, H.; Huang, X.; Liu, W. Review of recent advances in inorganic photoresists. RSC Adv. 2020, 10, 8385–8395. [Google Scholar] [CrossRef]
- Thakur, N.; Giuliani, A.; Nahon, L.; Castellanos, S. Photon-induced Fragmentation of Zinc-based Oxoclusters for EUV Lithography Applications. J. Photopolym. Sci. Technol. 2020, 33, 153–158. [Google Scholar] [CrossRef]
- Patiny, L.; Borel, A. ChemCalc: A building block for tomorrow’s chemical infrastructure. J. Chem. Inf. Model. 2013, 53, 1223–1228. [Google Scholar] [CrossRef]
- Cardineau, B.; Del Re, R.; Marnell, M.; Al-Mashat, H.; Vockenhuber, M.; Ekinci, Y.; Sarma, C.; Freedman, D.A.; Brainard, R.L. Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm). Microelectron. Eng. 2014, 127, 44–50. [Google Scholar] [CrossRef]
- Yu, Z.; Jarich, H.; Xiaomeng, L.; Fredrik, J.; Andreas, L.; Sonia, C.; Niklas, O.; Albert, M.B. Photochemical conversion of tin-oxo cage compounds studied using hard x-ray photoelectron spectroscopy. J. Micro/Nanolithogr. MEMS MOEMS 2017, 16, 023510. [Google Scholar] [CrossRef]
- Yeh, C.-C.; Liu, H.-C.; Heni, W.; Berling, D.; Zan, H.-W.; Soppera, O. Chemical and structural investigation of zinc-oxo cluster photoresists for DUV lithography. J. Mater. Chem. C 2017, 5, 2611–2619. [Google Scholar] [CrossRef]
- Trikeriotis, M.; Krysaki, M.; Chung, Y.; Ouyang, C.; Cardineau, B.; Brainard, R.; Ober, C.; Giannelis, E.; Cho, K. Nanoparticle Photoresists from HfO2 and ZrO2 for EUV Patterning. J. Photopolym. Sci. Technol. 2012, 25, 583–586. [Google Scholar] [CrossRef]
- Trikeriotis, M.; Krysak, M.; Chung, Y.S.; Ouyang, C.; Cardineau, B.; Brainard, R.; Ober, C.; Giannelis, E.; Cho, K. A new inorganic EUV resist with high-etch resistance. In Proceedings of the SPIE Advanced Lithography 2012, San Jose, CA, USA, 22 March 2012. [Google Scholar]
- Toriumi, M.; Sato, Y.; Kumai, R.; Yamashita, Y.; Tsukiyama, K.; Itani, T. Characterization of ‘metal resist’ for EUV lithography. In Proceedings of the SPIE Advanced Lithography 2016, San Jose, CA, USA, 18 March 2016. [Google Scholar]
- Li, L.; Chakrabarty, S.; Spyrou, K.; Ober, C.K.; Giannelis, E.P. Studying the Mechanism of Hybrid Nanoparticle Photoresists: Effect of Particle Size on Photopatterning. Chem. Mater. 2015, 27, 5027–5031. [Google Scholar] [CrossRef]
- Pirati, A.; Peeters, R.; Smith, D.; Lok, S.; van Noordenburg, M.; van Es, R.; Verhoeven, E.; Meijer, H.; Minnaert, A.; van der Horst, J.-W.; et al. EUV lithography performance for manufacturing: Status and outlook. In Proceedings of the SPIE Advanced Lithography, San Jose, CA, USA, 18 March 2016. [Google Scholar]
- Sekiguchi, A.; Matsumoto, Y.; Harada, T.; Watanabe, T.; Kinoshita, H. Study of Dill’s B parameter measurement of EUV resist. In Proceedings of the SPIE Advanced Lithography 2015, San Jose, CA, USA, 22–26 February 2015. [Google Scholar]
- Le, D.N.; Park, T.; Hwang, S.M.; Kim, J.-H.; Jung, Y.C.; Tiwale, N.; Subramanian, A.; Lee, W.-I.; Choi, R.; Sung, M.M. Atomic layer deposition and its derivatives for extreme ultraviolet (EUV) photoresist applications. JJAP 2023, 62, 1347–4065. [Google Scholar] [CrossRef]
- Wang, G.; Qin, C.; Yin, H.; Luo, J.; Duan, N.; Yang, P.; Gao, X.; Yang, T.; Li, J.; Yan, J.; et al. Study of SiGe selective epitaxial process integration with high-k and metal gate for 16/14nm nodes FinFET technology. Microelectron. Eng. 2016, 163, 49–54. [Google Scholar] [CrossRef]
- Yang, C.C.; Baumann, F.; Wang, P.C.; Lee, S.Y.; Ma, P.; AuBuchon, J.; Edelstein, D. Dependence of Cu electromigration resistance on selectively deposited CVD Co cap thickness. Microelectron. Eng. 2013, 106, 214–218. [Google Scholar] [CrossRef]
- Wada, T.; Hsieh, C.-Y.; Ko, A.; Biolsi, P. Line roughness improvements on EUV 36nm pitch pattern by plasma treatment method. In Proceedings of the SPIE Advanced Lithography 2019, San Jose, CA, USA, 29 March 2019. [Google Scholar]
- Lutker-Lee, K.; Church, J.; Miller, E.; Raley, A.; Meli, L. Plasma-based area selective deposition for extreme ultraviolet resist defectivity reduction and process window improvement. JVB 2022, 40, 032204. [Google Scholar] [CrossRef]
- Liu, E.; Lutker-Lee, K.; Lou, Q.; Chen, Y.-M.; Raley, A.; Biolsi, P.; Yu, K.-H.; Denbeaux, G. Line edge roughness reduction for EUV self-aligned double patterning by surface modification on spin-on-carbon and tone inversion technique. J. Micro/Nanopatterning Mater. Metrol. 2021, 20, 024901. [Google Scholar] [CrossRef]
- Leng, C.Z.; Losego, M.D. Vapor phase infiltration (VPI) for transforming polymers into organic–inorganic hybrid materials: A critical review of current progress and future challenges. Mater. Horiz. 2017, 4, 747–771. [Google Scholar] [CrossRef]
- Baryshnikova, M.; De Simone, D.; Knaepen, W.; Kachel, K.; BT, C.; Paolillo, S.; Maes, J.W.; De Roest, D.; Delgadillo, P.R.; Vandenberghe, G. Sequential infiltration synthesis for line edge roughness mitigation of EUV resist. J. Photopolym. Sci. Technol. 2017, 30, 667–670. [Google Scholar] [CrossRef]
- Tiwale, N.; Subramanian, A.; Kisslinger, K.; Lu, M.; Kim, J.; Stein, A.; Nam, C.-Y. Advancing next generation nanolithography with infiltration synthesis of hybrid nanocomposite resists. J. Mater. Chem. C 2019, 7, 8803–8812. [Google Scholar] [CrossRef]
- Shi, J.; Ravi, A.; Richey, N.E.; Gong, H.; Bent, S.F. Molecular layer deposition of a hafnium-based hybrid thin film as an electron beam resist. ACS Appl. Mater. Interfaces 2022, 14, 27140–27148. [Google Scholar] [CrossRef]
- Le, D.N.; Hwang, S.M.; Woo, J.; Choi, S.; Park, T.; Veyan, J.-F.; Tiwale, N.; Subramanian, A.; Lee, W.-I.; Nam, C.-Y. Chemical reactions induced by low-energy electron exposure on a novel inorganic-organic hybrid dry EUV photoresist deposited by molecular atomic layer deposition (MALD). In Proceedings of the SPIE Photomask Technology + EUV Lithography 2022, Monterey, CA, USA, 9 December 2022; pp. 27–32. [Google Scholar]
- Van den Eynden, D.; Pokratath, R.; De Roo, J. Nonaqueous Chemistry of Group 4 Oxo Clusters and Colloidal Metal Oxide Nanocrystals. Chem. Rev. 2022, 122, 10538–10572. [Google Scholar] [CrossRef]
- Niederberger, M. Nonaqueous sol–gel routes to metal oxide nanoparticles. Acc. Chem. Res. 2007, 40, 793–800. [Google Scholar] [CrossRef]
- Trentler, T.J.; Denler, T.E.; Bertone, J.F.; Agrawal, A.; Colvin, V.L. Synthesis of TiO2 nanocrystals by nonhydrolytic solution-based reactions. J. Am. Chem. Soc. 1999, 121, 1613–1614. [Google Scholar] [CrossRef]
- Pinna, N.; Garnweitner, G.; Antonietti, M.; Niederberger, M. Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv. Mater. 2004, 16, 2196–2200. [Google Scholar] [CrossRef]
- Joo, J.; Kwon, S.G.; Jung, H.Y.; Hyeon, T. Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination sol-gel reactions. J. Adv. Mater. 2005, 17, 1873–1877. [Google Scholar] [CrossRef]
- Li, X.-L.; Peng, Q.; Yi, J.-X.; Wang, X.; Li, Y. Near monodisperse TiO2 nanoparticles and nanorods. Chem. Eur. J. 2006, 12, 2383–2391. [Google Scholar] [CrossRef]
- Narayanaswamy, A.; Xu, H.; Pradhan, N.; Kim, M.; Peng, X. Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: Hydrolysis and alcoholysis vs. pyrolysis. J. Am. Chem. Soc. 2006, 128, 10310–10319. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhong, X.; Liu, S.; Li, D.; Han, M. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew. Chem. Int. Ed. 2005, 44, 3466–3470. [Google Scholar] [CrossRef]
- Niederberger, M.; Garnweitner, G.; Pinna, N.; Antonietti, M. Nonaqueous and halide-free route to crystalline BaTiO3, SrTiO3, and (Ba, Sr) TiO3 nanoparticles via a mechanism involving C-C bond formation. J. Am. Chem. Soc. 2004, 126, 9120–9126. [Google Scholar] [CrossRef] [PubMed]
- de Mello Donegá, C.; Liljeroth, P.; Vanmaekelbergh, D. Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 2005, 1, 1152–1162. [Google Scholar] [CrossRef]
- Park, J.; Lee, E.; Hwang, N.M.; Kang, M.; Kim, S.C.; Hwang, Y.; Park, J.G.; Noh, H.J.; Kim, J.Y.; Park, J.H. One-nanometer-scale size-controlled synthesis of monodisperse magnetic Iron oxide nanoparticles. Angew. Chem. 2005, 117, 2932–2937. [Google Scholar] [CrossRef]
- Zeng, H.; Rice, P.M.; Wang, S.X.; Sun, S. Shape-Controlled Synthesis and Shape-Induced Texture of MnFe2O4 Nanoparticles. J. Am. Chem. Soc. 2004, 126, 11458–11459. [Google Scholar] [CrossRef] [PubMed]
- Zitoun, D.; Pinna, N.; Frolet, N.; Belin, C. Single Crystal Manganese Oxide Multipods by Oriented Attachment. J. Am. Chem. Soc. 2005, 127, 15034–15035. [Google Scholar] [CrossRef]
- Joo, J.; Yu, T.; Kim, Y.W.; Park, H.M.; Wu, F.; Zhang, J.Z.; Hyeon, T. Multigram Scale Synthesis and Characterization of Monodisperse Tetragonal Zirconia Nanocrystals. J. Am. Chem. Soc. 2003, 125, 6553–6557. [Google Scholar] [CrossRef]
- Tang, J.; Fabbri, J.; Robinson, R.D.; Zhu, Y.; Herman, I.P.; Steigerwald, M.L.; Brus, L.E. Solid-Solution Nanoparticles: Use of a Nonhydrolytic Sol-Gel Synthesis To Prepare HfO2 and HfxZr1-xO2 Nanocrystals. Chem. Mater. 2004, 16, 1336–1342. [Google Scholar] [CrossRef]
- Ba, J.; Polleux, J.; Antonietti, M.; Niederberger, M. Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous Mesostructures. Adv. Mater. 2005, 17, 2509–2512. [Google Scholar] [CrossRef]
- Gaskins, B.C.; Lannutti, J.J. Room temperature perovskite production from bimetallic alkoxides by ketone assisted oxo supplementation (KAOS). JMR 1996, 11, 1953–1959. [Google Scholar] [CrossRef]
- Ba, J.; Fattakhova Rohlfing, D.; Feldhoff, A.; Brezesinski, T.; Djerdj, I.; Wark, M.; Niederberger, M. Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in Dependence of the Tin Oxide Concentration. Chem. Mater. 2006, 18, 2848–2854. [Google Scholar] [CrossRef]
- Thakur, N.; Bliem, R.; Mochi, I.; Vockenhuber, M.; Ekinci, Y.; Castellanos, S. Mixed-ligand zinc-oxoclusters: Efficient chemistry for high resolution nanolithography. J. Mater. Chem. C 2020, 8, 14499–14506. [Google Scholar] [CrossRef]
- Xu, H.; Sakai, K.; Kasahara, K.; Kosma, V.; Yang, K.; Herbol, H.C.; Odent, J.; Clancy, P.; Giannelis, E.P.; Ober, C.K. Metal–organic framework-inspired metal-containing clusters for high-resolution patterning. Chem. Mater. 2018, 30, 4124–4133. [Google Scholar] [CrossRef]
- Thakur, N.; Tseng, L.-T.; Vockenhuber, M.; Ekinci, Y.; Castellanos, S. Stability studies on a sensitive EUV photoresist based on zinc metal oxoclusters. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 043504. [Google Scholar] [CrossRef]
- Mojarad, N.; Gobrecht, J.; Ekinci, Y. Beyond EUV lithography: A comparative study of efficient photoresists’ performance. Sci. Rep. 2015, 5, 9235. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Yi, X.; Zhang, L. Non-alkyl tin-oxo clusters as new-type patterning materials for nanolithography. Sci. China Chem. 2022, 65, 114–119. [Google Scholar] [CrossRef]
- Puff, H.; Reuter, H. Zur hydrolyse von monoorganylzinn-trihalogeniden III. Isolierung und röntgenstrukturanalyse von verbindungen mit dem neuartigen käfig-ion [(i-PrSn)12O14(OH)6]2+. J. Organomet. Chem. 1989, 373, 173–184. [Google Scholar] [CrossRef]
- Manouras, T.; Argitis, P. High sensitivity resists for EUV lithography: A review of material design strategies and performance results. J. Nanomater. 2020, 10, 1593. [Google Scholar] [CrossRef]
- Haitjema, J.; Wu, L.; Giuliani, A.; Nahon, L.; Castellanos, S.; Brouwer, A.M. UV and VUV-induced fragmentation of tin-oxo cage ions. PCCP 2021, 23, 20909–20918. [Google Scholar] [CrossRef]
- Trikeriotis, M.; Bae, W.J.; Schwartz, E.; Krysak, M.; Lafferty, N.; Xie, P.; Smith, B.; Zimmerman, P.A.; Ober, C.K.; Giannelis, E.P. Development of an inorganic photoresist for DUV, EUV, and electron beam imaging. In Proceedings of the SPIE—The International Society for Optical Engineering, San Jose, CA, USA, 25 March 2010; pp. 120–129. [Google Scholar]
- Li, L.; Liu, X.; Pal, S.; Wang, S.; Ober, C.K.; Giannelis, E.P. Extreme ultraviolet resist materials for sub-7 nm patterning. Chem. Soc. Rev. 2017, 46, 4855–4866. [Google Scholar] [CrossRef]
- Krysak, M.; Blackwell, J.; Putna, S.; Leeson, M.; Younkin, T.; Harlson, S.; Frasure, K.; Gstrein, F. Investigation of novel inorganic resist materials for EUV lithography. In Proceedings of the SPIE Advanced Lithography 2014, San Jose, CA, USA, 23–27 February 2014. [Google Scholar]
- Boyce, J.R. The paradox of value, directed technical change, and the relative abundance of the chemical elements. Resour. Energy Econ. 2019, 58, 101114. [Google Scholar] [CrossRef]
- Bagbi, Y.; Sharma, A.; Bohidar, H.; Solanki, P.R. Immunosensor based on nanocomposite of nanostructured zirconium oxide and gelatin-A. Int. J. Biol. Macromol. 2016, 82, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Toriumi, M.; Sato, Y.; Koshino, M.; Suenaga, K.; Itani, T. Metal resist for extreme ultraviolet lithography characterized by scanning transmission electron microscopy. Appl. Phys. Express 2016, 9, 031601. [Google Scholar] [CrossRef]
- Xu, H.; Yang, K.; Sakai, K.; Kosma, V.; Kasahara, K.; Giannelis, E.P.; Ober, C.K. EUV metal oxide hybrid photoresists: Ultra-small structures for high-resolution patterning. In Proceedings of the SPIE Advanced Lithography 2018, San Jose, CA, USA, 19 March 2018; pp. 391–396. [Google Scholar]
- Li, L.; Chakrabarty, S.; Jiang, J.; Zhang, B.; Ober, C.; Giannelis, E.P. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups. Nanoscale 2016, 8, 1338–1343. [Google Scholar] [CrossRef]
- Wu, L.; Liu, J.; Vockenhuber, M.; Ekinci, Y.; Castellanos, S. Hybrid EUV resists with mixed organic shells: A simple preparation method. Eur. J. Inorg. Chem. 2019, 2019, 4136–4141. [Google Scholar] [CrossRef]
- Kataoka, S.; Sue, K. Enhanced Solubility of Zirconium Oxo Clusters from Diacetoxyzirconium (IV) Oxide Aqueous Solution as Inorganic Extreme-Ultraviolet Photoresists. Eur. J. Inorg. Chem. 2022, 2022, 1434–1948. [Google Scholar] [CrossRef]
- Gross, S.; Trimmel, G.; Schubert, U.; Noto, V.D. Inorganic–organic hybrid materials from poly(methylmethacrylate) crosslinked by an organically modified oxozirconium cluster. Synthesis and characterization. Polym. Adv. Technol. 2002, 13, 254–259. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, C.H.; Bechtel, H.; Weidman, T.; Salmeron, M. Infrared nanospectroscopy characterization of metal oxide photoresists. J. Micro/Nanolithogr. MEMS MOEMS 2022, 21, 041408. [Google Scholar] [CrossRef]
- Diulus, J.T.; Frederick, R.T.; Li, M.; Hutchison, D.C.; Olsen, M.R.; Lyubinetsky, I.; Árnadóttir, L.; Garfunkel, E.L.; Nyman, M.; Ogasawara, H.; et al. Ambient-Pressure X-ray Photoelectron Spectroscopy Characterization of Radiation-Induced Chemistries of Organotin Clusters. ACS Appl. Mater. Interfaces 2019, 11, 2526–2534. [Google Scholar] [CrossRef]
- Tobin, K.W. Inspection in semiconductor manufacturing. JEEE 1999, 10, 242–262. [Google Scholar]
- De Simone, D.; Ming, M.; Vandenberghe, G. Novel metal-oxide photoresist materials for extreme UV lithography. Mater. Sci. Eng. SPIE Newsroom 2016, 1, 1–2. [Google Scholar] [CrossRef]
- Clarke, J.S.; Schmidt, M.B.; Orji, N.G. Photoresist cross-sectioning with negligible damage using a dual-beam FIB-SEM: A high throughput method for profile imaging. J. Vac. Sci. Technol. B 2007, 25, 2526–2530. [Google Scholar] [CrossRef]
- Lorusso, G.F.; Ohashi, T.; Yamaguchi, A.; Inoue, O.; Sutani, T.; Horiguchi, N.; Bömmels, J.; Wilson, C.; Briggs, B.; Tan, C.L.; et al. Enabling CD SEM Metrology for 5 nm Technology Node and beyond; SPIE: San Jose, CA, USA, 2017; Volume 10145. [Google Scholar]
- Knight, S.; Dixson, R.; Jones, R.L.; Lin, E.K.; Orji, N.G.; Silver, R.; Villarrubia, J.S.; Vladár, A.E.; Wu, W.-l. Advanced metrology needs for nanoelectronics lithography. CR Phys. 2006, 7, 931–941. [Google Scholar] [CrossRef]
- Ueda, K.; Koshihara, S.; Mizuno, T.; Miura, A. The study of high-sensitivity metrology method by using CD-SEM. In Proceedings of the Metrology, Inspection, and Process Control for Microlithography XXV, San Jose, CA, USA, 1 March 2011; p. 797124. [Google Scholar]
- Wu, L.; Baljozovic, M.; Portale, G.; Kazazis, D.; Vockenhuber, M.; Jung, T.; Ekinci, Y.; Castellanos, S. Mechanistic insights in Zr-and Hf-based molecular hybrid EUV photoresists. J. Micro/Nanolithogr. MEMS MOEMS 2019, 18, 013504. [Google Scholar] [CrossRef]
- Yildirim, O.; Buitrago, E.; Hoefnagels, R.; Meeuwissen, M.; Wuister, S.; Rispens, G.; van Oosten, A.; Derks, P.; Finders, J.; Vockenhuber, M. Improvements in resist performance towards EUV HVM. In Proceedings of the SPIE Advanced Lithography 2017, San Jose, CA, USA, 27 March 2017; pp. 153–164. [Google Scholar]
- Gronheid, R.; Fonseca, C.; Leeson, M.J.; Adams, J.R.; Strahan, J.R.; Willson, C.G.; Smith, B.W. EUV resist requirements: Absorbance and acid yield. In Proceedings of the SPIE Advanced Lithography 2009, San Jose, CA, USA, 22–27 February 2009; pp. 889–896. [Google Scholar]
- Zhang, Y.; Haitjema, J.; Baljozovic, M.; Vockenhuber, M.; Kazazis, D.; Jung, T.A.; Ekinci, Y.; Brouwer, A.M. Dual-tone Application of a Tin-Oxo Cage Photoresist Under E-beam and EUV Exposure. J. Photopolym. Sci. Technol. 2018, 31, 249–255. [Google Scholar] [CrossRef]
- Hu, X.; Lawrence III, J.A.; Mullahoo, J.; Smith, Z.C.; Wilson, D.J.; Mace, C.R.; Thomas III, S.W. Directly photopatternable polythiophene as dual-tone photoresist. Macromolecules 2017, 50, 7258–7267. [Google Scholar] [CrossRef]
- Yang, K. Zinc-Based Photoresist for High-Resolution EUV (Extreme Ultraviolet) Lithography. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2019. [Google Scholar]
- Cardineau, B.; Del Re, R.; Al-Mashat, H.; Marnell, M.; Vockenhuber, M.; Ekinci, Y.; Sarma, C.; Neisser, M.; Freedman, D.A.; Brainard, R.L. EUV resists based on tin-oxo clusters. In Proceedings of the Advances in Patterning Materials and Processes XXXI, San Jose, CA, USA, 24–27 February 2014; pp. 335–346. [Google Scholar]
- Zhang, Y.; Haitjema, J.; Castellanos, S.; Lugier, O.; Sadegh, N.; Ovsyannikov, R.; Giangrisostomi, E.; Johansson, F.O.; Berggren, E.; Lindblad, A. Extreme ultraviolet photoemission of a tin-based photoresist. Appl. Phys. Lett. 2021, 118, 171903. [Google Scholar] [CrossRef]
- Mart, C.; Czernohorsky, M.; Kühnel, K.; Weinreich, W. Hafnium Zirconium Oxide Thin Films for CMOS Compatible Pyroelectric Infrared Sensors. Eng. Proc. 2021, 6, 27. [Google Scholar] [CrossRef]
- Liu, T.; Tao, P.; Wang, X.; Wang, H.; He, M.; Wang, Q.; Cui, H.; Wang, J.; Tang, Y.; Tang, J.; et al. Ultrahigh-printing-speed photoresists for additive manufacturing. Nat. Nanotechnol. 2024, 19, 51–57. [Google Scholar] [CrossRef]
- Resnick, D.J.; Choi, J. A review of nanoimprint lithography for high-volume semiconductor device manufacturing. Adv. Opt. Technol. 2017, 6, 229–241. [Google Scholar] [CrossRef]
- Tang, Y. Advanced Photoresists: Development, Application and Market. Highlights Sci. Eng. Technol. 2023, 29, 61–68. [Google Scholar] [CrossRef]
- De Simone, D.; Mao, M.; Kocsis, M.; De Schepper, P.; Lazzarino, F.; Vandenberghe, G.; Stowers, J.; Meyers, S.; Clark, B.L.; Grenville, A. Demonstration of an N7 integrated fab process for metal oxide EUV photoresist. In Proceedings of the SPIE Advanced Lithography 2016, San Jose, CA, USA, 21–25 February 2016; pp. 93–101. [Google Scholar]
- JSR Corporation. Available online: https://www.jsr.co.jp/jsr_e/company/ (accessed on 24 June 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.W.; Deeb, L.; Kumaniaev, S.; Wei, C.; Wang, K. Recent Advances in Metal-Oxide-Based Photoresists for EUV Lithography. Micromachines 2024, 15, 1122. https://doi.org/10.3390/mi15091122
Hasan MW, Deeb L, Kumaniaev S, Wei C, Wang K. Recent Advances in Metal-Oxide-Based Photoresists for EUV Lithography. Micromachines. 2024; 15(9):1122. https://doi.org/10.3390/mi15091122
Chicago/Turabian StyleHasan, Muhammad Waleed, Laura Deeb, Sergei Kumaniaev, Chenglu Wei, and Kaiying Wang. 2024. "Recent Advances in Metal-Oxide-Based Photoresists for EUV Lithography" Micromachines 15, no. 9: 1122. https://doi.org/10.3390/mi15091122
APA StyleHasan, M. W., Deeb, L., Kumaniaev, S., Wei, C., & Wang, K. (2024). Recent Advances in Metal-Oxide-Based Photoresists for EUV Lithography. Micromachines, 15(9), 1122. https://doi.org/10.3390/mi15091122