IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies
Abstract
:1. Introduction
2. IGZO Semiconductor-Based Electronic Applications
2.1. IGZO-Based Gas Sensors
2.2. Logic Circuits Application
2.3. IGZO-Based Biosensors
2.4. Neuromorphic Devices
2.5. Photo Detectors
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Shiah, Y.-S.; Sim, K.; Shi, Y.; Abe, K.; Ueda, S.; Sasase, M.; Kim, J.; Hosono, H. Mobility–stability trade-off in oxide thin-film transistors. Nat. Electron. 2021, 4, 800–807. [Google Scholar] [CrossRef]
- Sheng, J.; Hong, T.; Lee, H.-M.; Kim, K.; Sasase, M.; Kim, J.; Hosono, H.; Park, J.-S. Amorphous IGZO TFT with high mobility of ∼70 cm2/(V s) via vertical dimension control using PEALD. ACS Appl. Mater. Interfaces 2019, 11, 40300–40309. [Google Scholar] [CrossRef]
- Park, Y.; Cho, D.Y.; Kim, R.; Kim, K.H.; Lee, J.W.; Lee, D.H.; Jeong, S.I.; Ahn, N.R.; Lee, W.; Choi, J.B. Defect Engineering for High Performance and Extremely Reliable a-IGZO Thin-Film Transistor in QD-OLED. Adv. Electron. Mater. 2022, 8, 2101273. [Google Scholar] [CrossRef]
- Kim, D.; Kim, Y.; Lee, S.; Kang, M.S.; Kim, D.H.; Lee, H. High resolution a-IGZO TFT pixel circuit for compensating threshold voltage shifts and OLED degradations. IEEE J. Electron Devices Soc. 2017, 5, 372–377. [Google Scholar] [CrossRef]
- Huang, S.; Jin, J.; Kim, J.; Wu, W.; Song, A.; Zhang, J. IGZO Source-Gated Transistor for AMOLED Pixel Circuit. IEEE Trans. Electron Devices 2023, 70, 3637–3642. [Google Scholar] [CrossRef]
- Kang, S.-H.; Jo, J.-W.; Lee, J.M.; Moon, S.; Shin, S.B.; Choi, S.B.; Byeon, D.; Kim, J.; Kim, M.-G.; Kim, Y.-H. Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat. Commun. 2024, 15, 2814. [Google Scholar] [CrossRef]
- Geng, D.; Wang, K.; Li, L.; Myny, K.; Nathan, A.; Jang, J.; Kuo, Y.; Liu, M. Thin-film transistors for large-area electronics. Nat. Electron. 2023, 6, 963–972. [Google Scholar] [CrossRef]
- Oh, H.; Oh, J.-Y.; Park, C.W.; Pi, J.-E.; Yang, J.-H.; Hwang, C.-S. High density integration of stretchable inorganic thin film transistors with excellent performance and reliability. Nat. Commun. 2022, 13, 4963. [Google Scholar] [CrossRef]
- Cho, M.H.; Choi, C.H.; Seul, H.J.; Cho, H.C.; Jeong, J.K. Achieving a low-voltage, high-mobility IGZO transistor through an ALD-derived bilayer channel and a hafnia-based gate dielectric stack. ACS Appl. Mater. Interfaces 2021, 13, 16628–16640. [Google Scholar] [CrossRef]
- Kim, D.-G.; Ryu, S.-H.; Jeong, H.-J.; Park, J.-S. Facile and stable n+ doping process via simultaneous ultraviolet and thermal energy for coplanar ALD-IGZO thin-film transistors. ACS Appl. Electron. Mater. 2021, 3, 3530–3537. [Google Scholar] [CrossRef]
- Kim, J.; Park, J.; Yoon, G.; Khushabu, A.; Kim, J.-S.; Pae, S.; Cho, E.-C.; Yi, J. Effect of IGZO thin films fabricated by Pulsed-DC and RF sputtering on TFT characteristics. Mater. Sci. Semicond. Process. 2020, 120, 105264. [Google Scholar] [CrossRef]
- Guo, M.; Ou, H.; Xie, D.; Zhu, Q.; Wang, M.; Liang, L.; Liu, F.; Ning, C.; Cao, H.; Yuan, G. Critical assessment of the high carrier mobility of bilayer In2O3/IGZO transistors and the underlying mechanisms. Adv. Electron. Mater. 2023, 9, 2201184. [Google Scholar] [CrossRef]
- Wen, P.; Peng, C.; Chen, Z.; Ding, X.; Chen, F.-H.; Yan, G.; Xu, L.; Wang, D.; Sun, X.; Chen, L. High mobility of IGO/IGZO double-channel thin-film transistors by atomic layer deposition. Appl. Phys. Lett. 2024, 124, 133501. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chien, C.-H. Highly transparent, high-performance IGZO-TFTs using the selective formation of IGZO source and drain electrodes. IEEE Electron Device Lett. 2014, 35, 645–647. [Google Scholar]
- Lee, S.H.; Lee, S.; Jang, S.C.; On, N.; Kim, H.-S.; Jeong, J.K. Mobility enhancement of indium-gallium oxide via oxygen diffusion induced by a metal catalytic layer. J. Alloys Compd. 2021, 862, 158009. [Google Scholar] [CrossRef]
- Jeong, K.; Shin, D.Y.; Park, J.; Yi, D.; Hong, H.; Kim, H.; Chung, K. Noncontact Monitoring and Imaging of the Operation and Performance of Thin-Film Field-Effect Transistors. Adv. Sci. 2024, 2407923. [Google Scholar] [CrossRef]
- Liu, K.; Ouyang, B.; Guo, X.; Guo, Y.; Liu, Y. Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron. 2022, 6, 1. [Google Scholar] [CrossRef]
- Lee, G.; Jang, S.C.; Lee, J.H.; Park, J.; Noh, B.; Choi, H.; Kweon, H.; Kim, D.H.; Kim, H.Y.; Kim, H. Intrinsically Photopatternable High-k Polymer Dielectric for Flexible Electronics. Adv. Funct. Mater. 2024, 34, 2405530. [Google Scholar] [CrossRef]
- Kim, J.; Jang, S.C.; Bae, K.; Park, J.; Kim, H.-D.; Lahann, J.; Kim, H.-S.; Lee, K.J. Chemically tunable organic dielectric layer on an oxide TFT: Poly(p-xylylene) derivatives. ACS Appl. Mater. Interfaces 2021, 13, 43123–43133. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Li, Z.-Y.; Li, Y.-J.; Zhu, M.-M.; Luo, L.-B.; Jiang, S.-S.; Wang, Y.; Wang, W.-H.; He, G. High-performance IGZO/In2O3 NW/IGZO phototransistor with heterojunctions architecture for image processing and neuromorphic computing. J. Mater. Sci. Technol. 2024, 196, 190–199. [Google Scholar] [CrossRef]
- Zhu, Y.; Peng, B.; Zhu, L.; Chen, C.; Wang, X.; Mao, H.; Zhu, Y.; Fu, C.; Ke, S.; Wan, C. IGZO nanofiber photoelectric neuromorphic transistors with indium ratio tuned synaptic plasticity. Appl. Phys. Lett. 2022, 121, 133502. [Google Scholar] [CrossRef]
- Liu, J.; Tang, W.; Liu, Y.; Yang, H.; Li, X. Almost-nonvolatile IGZO-TFT-based near-sensor in-memory computing. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22–28 May 2021; pp. 1–5. [Google Scholar]
- Du, Y.; Tang, J.; Li, Y.; Xi, Y.; Li, Y.; Li, J.; Huang, H.; Qin, Q.; Zhang, Q.; Gao, B. Monolithic 3D integration of analog RRAM-based computing-in-memory and sensor for energy-efficient near-sensor computing. Adv. Mater. 2024, 36, 2302658. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.-Y.; Liu, W.-C. Study of a high-performance chemoresistive ethanol gas sensor synthesized with au nanoparticles and an amorphous IGZO thin film. IEEE Trans. Electron Devices 2020, 68, 753–760. [Google Scholar] [CrossRef]
- Pyo, J.-Y.; Cho, W.-J. In-plane-gate a-IGZO thin-film transistor for high-sensitivity pH sensor applications. Sens. Actuators B Chem. 2018, 276, 101–106. [Google Scholar] [CrossRef]
- Smith, J.T.; Shah, S.S.; Goryll, M.; Stowell, J.R.; Allee, D.R. Flexible ISFET biosensor using IGZO metal oxide TFTs and an ITO sensing layer. IEEE Sens. J. 2013, 14, 937–938. [Google Scholar] [CrossRef]
- Yang, T.-H.; Chen, T.-Y.; Wu, N.-T.; Chen, Y.-T.; Huang, J.-J. IGZO-TFT biosensors for Epstein–Barr virus protein detection. IEEE Trans. Electron Devices 2017, 64, 1294–1299. [Google Scholar] [CrossRef]
- Vijjapu, M.T.; Surya, S.G.; Yuvaraja, S.; Zhang, X.; Alshareef, H.N.; Salama, K.N. Fully integrated indium gallium zinc oxide NO2 gas detector. ACS Sens. 2020, 5, 984–993. [Google Scholar] [CrossRef]
- Shin, W.; Kwon, D.; Ryu, M.; Kwon, J.; Hong, S.; Jeong, Y.; Jung, G.; Park, J.; Kim, D.; Lee, J.-H. Effects of IGZO film thickness on H2S gas sensing performance: Response, excessive recovery, low-frequency noise, and signal-to-noise ratio. Sens. Actuators B Chem. 2021, 344, 130148. [Google Scholar] [CrossRef]
- Han, K.-L.; Lee, W.-B.; Kim, Y.-D.; Kim, J.-H.; Choi, B.-D.; Park, J.-S. Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application. ACS Appl. Electron. Mater. 2021, 3, 5037–5047. [Google Scholar] [CrossRef]
- Jeong, J.; Seo, S.G.; Yu, S.; Kang, Y.; Song, J.; Jin, S.H. Flexible Light-to-Frequency Conversion Circuits Built with Si-Based Frequency-to-Digital Converters via Complementary Photosensitive Ring Oscillators with p-Type SWNT and n-Type a-IGZO Thin Film Transistors. Small 2021, 17, 2008131. [Google Scholar] [CrossRef]
- Hwang, C.; Baek, S.; Song, Y.; Lee, W.-J.; Park, S. Wide-range and selective detection of SARS-CoV-2 DNA via surface modification of electrolyte-gated IGZO thin-film transistors. Iscience 2024, 27, 109061. [Google Scholar] [CrossRef]
- Subramanian Periyal, S.; Jagadeeswararao, M.; Ng, S.E.; John, R.A.; Mathews, N. Halide perovskite quantum dots photosensitized-amorphous oxide transistors for multimodal synapses. Adv. Mater. Technol. 2020, 5, 2000514. [Google Scholar] [CrossRef]
- Yoon, J.; Bae, G.-Y.; Yoo, S.; Yoo, J.I.; You, N.-H.; Hong, W.-K.; Ko, H.C. Deep-ultraviolet sensing characteristics of transparent and flexible IGZO thin film transistors. J. Alloys Compd. 2020, 817, 152788. [Google Scholar] [CrossRef]
- Kim, W.-G.; Tak, Y.J.; Yoo, H.; Kim, H.T.; Park, J.W.; Choi, D.H.; Kim, H.J. Photo-induced Reactive Oxygen Species Activation for Amorphous Indium–Gallium–Zinc Oxide Thin-Film Transistors Using Sodium Hypochlorite. ACS Appl. Mater. Interfaces 2021, 13, 44531–44540. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Yu, X.; Li, Y.; Cheng, J.; Li, Q.; Xiao, B. Bandgap engineering of strained S-terminated MXene and its promising application as NOx gas sensor. Appl. Surf. Sci. 2022, 592, 153296. [Google Scholar] [CrossRef]
- Reddeppa, M.; Park, B.-G.; Murali, G.; Choi, S.H.; Chinh, N.D.; Kim, D.; Yang, W.; Kim, M.-D. NOx gas sensors based on layer-transferred n-MoS2/p-GaN heterojunction at room temperature: Study of UV light illuminations and humidity. Sens. Actuators B Chem. 2020, 308, 127700. [Google Scholar] [CrossRef]
- Sun, B.; Qin, F.; Jiang, L.; Gao, J.; Liu, Z.; Wang, J.; Zhang, Y.; Fan, J.; Kan, K.; Shi, K. Room-temperature gas sensors based on three-dimensional Co3O4/Al2O3@Ti3C2Tx MXene nanocomposite for highly sensitive NOx detection. Sens. Actuators B Chem. 2022, 368, 132206. [Google Scholar] [CrossRef]
- Huang, C.-Y.; He, X.-R.; Dai, T.-Y. Realization of a self-powered Cu2O ozone gas sensor through the lateral photovoltaic effect. J. Mater. Chem. C 2022, 10, 16517–16523. [Google Scholar] [CrossRef]
- Russ, T.; Hu, Z.; Li, L.; Zhou, L.; Liu, H.; Weimar, U.; Barsan, N. In operando investigation of the concentration dependent NO2 sensing mechanism of Bi2S3 nanorods at low temperatures and the interference of O3. ACS Sens. 2022, 7, 3023–3031. [Google Scholar] [CrossRef]
- Han, P.; Mei, H.; Liu, D.; Zeng, N.; Tang, X.; Wang, Y.; Pan, Y. Calibrations of low-cost air pollution monitoring sensors for CO, NO2, O3, and SO2. Sensors 2021, 21, 256. [Google Scholar] [CrossRef]
- Goswami, P.; Gupta, G. Recent progress of flexible NO2 and NH3 gas sensors based on transition metal dichalcogenides for room temperature sensing. Mater. Today Chem. 2022, 23, 100726. [Google Scholar] [CrossRef]
- Nakarungsee, P.; Srirattanapibul, S.; Issro, C.; Tang, I.-M.; Thongmee, S. High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A Phys. 2020, 314, 112230. [Google Scholar] [CrossRef]
- Fernández-Ramos, M.D.; Capitán-Vallvey, L.F.; Pastrana-Martínez, L.M.; Morales-Torres, S.; Maldonado-Hódar, F.J. Chemoresistive NH3 gas sensor at room temperature based on the carbon gel-TiO2 nanocomposites. Sens. Actuators B Chem. 2022, 368, 132103. [Google Scholar] [CrossRef]
- Zhou, L.; Kato, F.; Nakamura, N.; Oshikane, Y.; Nagakubo, A.; Ogi, H. MEMS hydrogen gas sensor with wireless quartz crystal resonator. Sens. Actuators B Chem. 2021, 334, 129651. [Google Scholar] [CrossRef]
- Singh, A.; Sikarwar, S.; Verma, A.; Yadav, B.C. The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: A review. Sens. Actuators A Phys. 2021, 332, 113127. [Google Scholar] [CrossRef]
- Naqi, M.; Jang, S.C.; Cho, Y.; Park, J.M.; Oh, J.O.; Rho, H.Y.; Kim, H.-S.; Kim, S. Low temperature processed, highly stable CMOS inverter by integrating Zn-ON and tellurium thin-film transistors. J. Inf. Disp. 2023, 24, 199–204. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor gas sensors: Materials, technology, design, and application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef] [PubMed]
- Uma, S.; Shobana, M.K. Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring. Sens. Actuators A Phys. 2023, 349, 114044. [Google Scholar] [CrossRef]
- Yamazoe, N.; Shimanoe, K. Fundamentals of semiconductor gas sensors. In Semiconductor Gas Sensors; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–38. [Google Scholar]
- Das, S.; Mojumder, S.; Saha, D.; Pal, M. Influence of major parameters on the sensing mechanism of semiconductor metal oxide based chemiresistive gas sensors: A review focused on personalized healthcare. Sens. Actuators B Chem. 2022, 352, 131066. [Google Scholar] [CrossRef]
- Yang, X.; Deng, Y.; Yang, H.; Liao, Y.; Cheng, X.; Zou, Y.; Wu, L.; Deng, Y. Functionalization of mesoporous semiconductor metal oxides for gas sensing: Recent advances and emerging challenges. Adv. Sci. 2023, 10, 2204810. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-L.; Liu, I.-P.; Chen, W.-C.; Niu, J.-S.; Liu, W.-C. Study of a platinum nanoparticle (Pt NP)/amorphous In-Ga-Zn-O (A-IGZO) thin-film-based ammonia gas sensor. Sens. Actuators B Chem. 2020, 322, 128592. [Google Scholar] [CrossRef]
- Eadi, S.B.; Shin, H.; Nguyen, K.T.; Song, K.-W.; Choi, H.-W.; Kim, S.-H.; Lee, H.-D. Indium-gallium–zinc oxide (IGZO) thin-film gas sensors prepared via post-deposition high-pressure annealing for NO2 detection. Sens. Actuators B Chem. 2022, 353, 131082. [Google Scholar] [CrossRef]
- Huang, W.-C.; Li, Y.; Chang, N.-H.; Hong, W.-J.; Wu, S.-Y.; Liao, S.-Y.; Hsueh, W.-J.; Wang, C.-M.; Huang, C.-Y. Highly stable and selective H2 gas sensors based on light-activated a-IGZO thin films with ZIF-8 selective membranes. Sens. Actuators B Chem. 2024, 417, 136175. [Google Scholar] [CrossRef]
- Huang, C.-Y.; He, X.-R.; Huang, C.-T. Realization of a self-powered InGaZnO MSM ozone sensor via a surface state modulated photovoltaic effect. ACS Appl. Electron. Mater. 2022, 4, 5437–5445. [Google Scholar] [CrossRef]
- Pham, T.; Li, G.; Bekyarova, E.; Itkis, M.E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Sun, Z.; Zhang, D.; Xu, Q.; Meng, L.; Qin, Y. Mechanism of sensitivity enhancement of a ZnO nanofilm gas sensor by UV light illumination. ACS Sens. 2019, 4, 1577–1585. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.; Cai, L.; Qi, W.; Sun, Y.; Xu, J.-L.; Sun, M.; Zhu, H.; Xiang, L.; Xie, D. UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sens. Actuators B Chem. 2019, 290, 443–452. [Google Scholar] [CrossRef]
- Kaur, N.; Zappa, D.; Poli, N.; Comini, E. Integration of VLS-Grown WO3 Nanowires into Sensing Devices for the Detection of H2S and O3. ACS Omega 2019, 4, 16336–16343. [Google Scholar] [CrossRef] [PubMed]
- Sui, N.; Wei, X.; Cao, S.; Zhang, P.; Zhou, T.; Zhang, T. Nanoscale bimetallic AuPt-functionalized metal oxide chemiresistors: Ppb-level and selective detection for ozone and acetone. ACS Sens. 2022, 7, 2178–2187. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Juan, K.-Y.; Guo, P.-H.; Wu, Y.-R.; Kao, S.-F.; Liao, S.-Y. Self-Powered InGaZnO Ozone Gas Sensors Based on a Metal–Semiconductor–Metal Structure with Asymmetric Interdigitated Electrodes. ACS Appl. Electron. Mater. 2024, 6, 2075–2083. [Google Scholar] [CrossRef]
- Tabata, H.; Matsuyama, H.; Goto, T.; Kubo, O.; Katayama, M. Visible-light-activated response originating from carrier-mobility modulation of NO2 gas sensors based on MoS2 monolayers. ACS Nano 2021, 15, 2542–2553. [Google Scholar] [CrossRef]
- Niu, Y.; Zeng, J.; Liu, X.; Li, J.; Wang, Q.; Li, H.; Rooij, N.F.d.; Wang, Y.; Zhou, G. A photovoltaic self-powered gas sensor based on all-dry transferred MoS2/GaSe heterojunction for ppb-level NO2 sensing at room temperature. Adv. Sci. 2021, 8, 2100472. [Google Scholar] [CrossRef]
- Wang, B.; Thukral, A.; Xie, Z.; Liu, L.; Zhang, X.; Huang, W.; Yu, X.; Yu, C.; Marks, T.J.; Facchetti, A. Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat. Commun. 2020, 11, 2405. [Google Scholar] [CrossRef] [PubMed]
- Vijjapu, M.T.; Surya, S.; Zalte, M.; Yuvaraja, S.; Baghini, M.S.; Salama, K.N. Towards a low cost fully integrated IGZO TFT NO2 detection and quantification: A solution-processed approach. Sens. Actuators B Chem. 2021, 331, 129450. [Google Scholar] [CrossRef]
- Jang, Y.-W.; Kang, J.; Jo, J.-W.; Kim, Y.-H.; Kim, J.; Park, S.K. Improved dynamic responses of room-temperature operable field-effect-transistor gas sensors enabled by programmable multi-spectral ultraviolet illumination. Sens. Actuators B Chem. 2021, 342, 130058. [Google Scholar] [CrossRef]
- Wu, C.-H.; Jiang, G.-J.; Chang, K.-W.; Lin, C.-W.; Chen, K.-L. Highly sensitive amorphous In–Ga–Zn–O films for ppb-level ozone sensing: Effects of deposition temperature. Sens. Actuators B Chem. 2015, 211, 354–358. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, W.; Zhu, L.; Yao, Y. Amorphous In–Ga–Zn–O powder with high gas selectivity towards wide range concentration of C2H5OH. Sensors 2017, 17, 1203. [Google Scholar] [CrossRef]
- Cadilha Marques, G.; Weller, D.; Erozan, A.T.; Feng, X.; Tahoori, M.; Aghassi-Hagmann, J. Progress report on “from printed electrolyte-gated metal-oxide devices to circuits”. Adv. Mater. 2019, 31, 1806483. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.W.; Choi, Y.-E.; Kim, W.-S.; Park, J.-H.; Kim, S.; Shin, S.; Lee, K.; Chang, J.; Kim, S.-J.; Kim, K.R. Tunnelling-based ternary metal–oxide–semiconductor technology. Nat. Electron. 2019, 2, 307–312. [Google Scholar] [CrossRef]
- Park, S.; Lee, H.J.; Choi, W.; Jin, H.; Cho, H.; Jeong, Y.; Lee, S.; Kim, K.; Im, S. Quaternary NAND logic and complementary ternary inverter with p-MoTe2/n-MoS2 heterostack channel transistors. Adv. Funct. Mater. 2022, 32, 2108737. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhang, L.; Song, W.; Feng, S.; Xu, H.; Sun, J.; Yang, S.; Chen, T.; Wei, J.; Chen, K.J. Gallium nitride-based complementary logic integrated circuits. Nat. Electron. 2021, 4, 595–603. [Google Scholar] [CrossRef]
- Chen, H.; Xue, X.; Liu, C.; Fang, J.; Wang, Z.; Wang, J.; Zhang, D.W.; Hu, W.; Zhou, P. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 2021, 4, 399–404. [Google Scholar] [CrossRef]
- Migliato Marega, G.; Zhao, Y.; Avsar, A.; Wang, Z.; Tripathi, M.; Radenovic, A.; Kis, A. Logic-in-memory based on an atomically thin semiconductor. Nature 2020, 587, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Guo, E.; Xing, S.; Dollinger, F.; Hübner, R.; Wang, S.-J.; Wu, Z.; Leo, K.; Kleemann, H. Integrated complementary inverters and ring oscillators based on vertical-channel dual-base organic thin-film transistors. Nat. Electron. 2021, 4, 588–594. [Google Scholar] [CrossRef]
- Lei, T.; Shao, L.-L.; Zheng, Y.-Q.; Pitner, G.; Fang, G.; Zhu, C.; Li, S.; Beausoleil, R.; Wong, H.-S.P.; Huang, T.-C. Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 2019, 10, 2161. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Kim, S.; Woo, G.; Kim, T.; Kim, Y.J.; Yoo, H. A Mixture of Negative-, Zero-, and Positive-Differential Transconductance Switching from Tellurium/Indium Gallium Zinc Oxide Heterostructures. ACS Appl. Mater. Interfaces 2024, 16, 20705–20714. [Google Scholar] [CrossRef] [PubMed]
- Naqi, M.; Cho, Y.; Kim, S. High-speed current switching of inverted-staggered bottom-gate a-IGZO-based thin-film transistors with highly stable logic circuit operations. ACS Appl. Electron. Mater. 2023, 5, 3378–3383. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, Y.; He, G.; Ge, B.; Liu, W. Balanced performance improvement of a-InGaZnO thin-film transistors using ALD-derived Al2O3-passivated high-k HfGdOx dielectrics. ACS Appl. Electron. Mater. 2020, 2, 3728–3740. [Google Scholar] [CrossRef]
- Pradhan, J.R.; Singh, M.; Dasgupta, S. Inkjet-Printed, Deep Subthreshold Operated Pseudo-CMOS Inverters with High Voltage Gain and Low Power Consumption. Adv. Electron. Mater. 2022, 8, 2200528. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, J.; Hu, Z.; Li, Y.; Du, L.; Wang, Y.; Zhou, L.; Wang, Q.; Song, A.; Xin, Q. Oxide-based complementary inverters with high gain and nanowatt power consumption. IEEE Electron Device Lett. 2018, 39, 1676–1679. [Google Scholar] [CrossRef]
- Yatsu, K.; Lee, H.-A.; Kim, D.H.; Park, I.-J.; Kwon, H.-I. Highly stable oxide thin-film transistor-based complementary logic circuits under X-ray irradiation. ACS Appl. Electron. Mater. 2022, 4, 3606–3614. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.S.; Yu, S.; Park, J.H.; Bae, H.; Im, S. Tungsten Dichalcogenide Nanoflake/InGaZnO Thin-Film Heterojunction for Photodetector, Inverter, and AC Rectifier Circuits. Adv. Electron. Mater. 2020, 6, 2000026. [Google Scholar] [CrossRef]
- Kim, W.; Lee, W.; Kwak, T.; Baek, S.; Lee, S.; Park, S. Influence of UV/Ozone Treatment on Threshold Voltage Modulation in Sol–Gel IGZO Thin-Film Transistors. Adv. Mater. Interfaces 2022, 9, 2200032. [Google Scholar] [CrossRef]
- Han, Y.; Kim, S.; Kim, C.-H.; Yoo, H. Experimental and theoretical evidence of charge injection barrier control by small-molecular charge injection layer and its effects on organic–Inorganic complementary inverters. IEEE Trans. Electron Devices 2023, 70, 1710–1714. [Google Scholar] [CrossRef]
- Sonmezoglu, S.; Fineman, J.R.; Maltepe, E.; Maharbiz, M.M. Monitoring deep-tissue oxygenation with a millimeter-scale ultrasonic implant. Nat. Biotechnol. 2021, 39, 855–864. [Google Scholar] [CrossRef]
- Chung, H.U.; Rwei, A.Y.; Hourlier-Fargette, A.; Xu, S.; Lee, K.; Dunne, E.C.; Xie, Z.; Liu, C.; Carlini, A.; Kim, D.H. Skin-interfaced biosensors for advanced wireless physiological monitoring in neonatal and pediatric intensive-care units. Nat. Med. 2020, 26, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Srichan, C.; Srichan, W.; Danvirutai, P.; Ritsongmuang, C.; Sharma, A.; Anutrakulchai, S. Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features. Sci. Rep. 2022, 12, 1769. [Google Scholar] [CrossRef] [PubMed]
- Lipani, L.; Dupont, B.G.R.; Doungmene, F.; Marken, F.; Tyrrell, R.M.; Guy, R.H.; Ilie, A. Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat. Nanotechnol. 2018, 13, 504–511. [Google Scholar] [CrossRef] [PubMed]
- Kaisti, M.; Panula, T.; Leppänen, J.; Punkkinen, R.; Jafari Tadi, M.; Vasankari, T.; Jaakkola, S.; Kiviniemi, T.; Airaksinen, J.; Kostiainen, P. Clinical assessment of a non-invasive wearable MEMS pressure sensor array for monitoring of arterial pulse waveform, heart rate and detection of atrial fibrillation. npj Digit. Med. 2019, 2, 39. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.-Y.; Choi, Y.-W.; Park, H.-K.; Cho, S.-H.; Cho, S.H.; Lim, Y.-H. A novel non-contact heart rate monitor using impulse-radio ultra-wideband (IR-UWB) radar technology. Sci. Rep. 2018, 8, 13053. [Google Scholar] [CrossRef]
- Ates, H.C.; Nguyen, P.Q.; Gonzalez-Macia, L.; Morales-Narváez, E.; Güder, F.; Collins, J.J.; Dincer, C. End-to-end design of wearable sensors. Nat. Rev. Mater. 2022, 7, 887–907. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Y.; Bo, X.; Min, J.; Pak, O.S.; Zhu, L.; Wang, M.; Tu, J.; Kogan, A.; Zhang, H. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 2020, 38, 217–224. [Google Scholar] [CrossRef]
- Kim, J.; Campbell, A.S.; de Ávila, B.E.-F.; Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 2019, 37, 389–406. [Google Scholar] [CrossRef]
- Hwang, C.; Kwak, T.; Kim, C.-H.; Kim, J.H.; Park, S. Quantitative and rapid detection of iodide ion via electrolyte-gated IGZO thin-film transistors. Sens. Actuators B Chem. 2022, 353, 131144. [Google Scholar] [CrossRef]
- Hyun, T.-H.; Cho, W.-J. High-Performance Potassium-Selective Biosensor Platform Based on Resistive Coupling of a-IGZO Coplanar-Gate Thin-Film Transistor. Int. J. Mol. Sci. 2023, 24, 6164. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.-K.; Cho, W.-J. High sensitivity In-Ga-Zn-O nanofiber-based double gate field effect transistors for chemical sensing. Sens. Actuators B Chem. 2021, 326, 128827. [Google Scholar] [CrossRef]
- Son, H.W.; Park, J.H.; Chae, M.-S.; Kim, B.-H.; Kim, T.G. Bilayer indium gallium zinc oxide electrolyte-gated field-effect transistor for biosensor platform with high reliability. Sens. Actuators B Chem. 2020, 312, 127955. [Google Scholar] [CrossRef]
- Hyun, T.-H.; Cho, W.-J. Fully transparent and highly sensitive pH sensor based on an a-IGZO thin-film transistor with coplanar dual-gate on flexible polyimide substrates. Chemosensors 2023, 11, 46. [Google Scholar] [CrossRef]
- Cho, S.-K.; Cho, W.-J. Highly sensitive and transparent urea-EnFET based point-of-care diagnostic test sensor with a triple-gate a-IGZO TFT. Sensors 2021, 21, 4748. [Google Scholar] [CrossRef] [PubMed]
- Jeon, H.-U.; Cho, W.-J. Fully transparent and sensitivity-programmable amorphous indium-gallium-zinc-oxide thin-film transistor-based biosensor platforms with resistive switching memories. Sensors 2021, 21, 4435. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ostrowski, D.P.; France, R.M.; Zhu, K.; Van De Lagemaat, J.; Luther, J.M.; Beard, M.C. Observation of a hot-phonon bottleneck in lead-iodide perovskites. Nat. Photonics 2016, 10, 53–59. [Google Scholar] [CrossRef]
- Yang, J.; Wen, X.; Xia, H.; Sheng, R.; Ma, Q.; Kim, J.; Tapping, P.; Harada, T.; Kee, T.W.; Huang, F. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun. 2017, 8, 14120. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Y.; Guo, Y. Intrinsically flexible organic phototransistors for bioinspired neuromorphic sensory system. Wearable Electron. 2024, 1, 41–52. [Google Scholar] [CrossRef]
- Markovic, D.; Mizrahi, A.; Querlioz, D.; Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2020, 2, 499–510. [Google Scholar] [CrossRef]
- Song, K.M.; Jeong, J.-S.; Pan, B.; Zhang, X.; Xia, J.; Cha, S.; Park, T.-E.; Kim, K.; Finizio, S.; Raabe, J. Skyrmion-based artificial synapses for neuromorphic computing. Nat. Electron. 2020, 3, 148–155. [Google Scholar] [CrossRef]
- Wang, T.; Meng, J.; Zhou, X.; Liu, Y.; He, Z.; Han, Q.; Li, Q.; Yu, J.; Li, Z.; Liu, Y. Reconfigurable neuromorphic memristor network for ultralow-power smart textile electronics. Nat. Commun. 2022, 13, 7432. [Google Scholar] [CrossRef]
- Göltz, J.; Kriener, L.; Baumbach, A.; Billaudelle, S.; Breitwieser, O.; Cramer, B.; Dold, D.; Kungl, A.F.; Senn, W.; Schemmel, J. Fast and energy-efficient neuromorphic deep learning with first-spike times. Nat. Mach. Intell. 2021, 3, 823–835. [Google Scholar] [CrossRef]
- Park, J.-M.; Hwang, H.; Song, M.S.; Jang, S.C.; Kim, J.H.; Kim, H.; Kim, H.-S. All-solid-state synaptic transistors with lithium-ion-based electrolytes for linear weight mapping and update in neuromorphic computing systems. ACS Appl. Mater. Interfaces 2023, 15, 47229–47237. [Google Scholar] [CrossRef]
- Song, Y.-W.; Chang, Y.-H.; Choi, J.; Song, M.-K.; Yoon, J.H.; Lee, S.; Jung, S.-Y.; Ham, W.; Park, J.-M.; Kim, H.-S. Doping modulated ion hopping in tantalum oxide based resistive switching memory for linear and stable switching dynamics. Appl. Surf. Sci. 2023, 631, 157356. [Google Scholar] [CrossRef]
- Prezioso, M.; Mahmoodi, M.R.; Bayat, F.M.; Nili, H.; Kim, H.; Vincent, A.; Strukov, D.B. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits. Nat. Commun. 2018, 9, 5311. [Google Scholar] [CrossRef]
- Wang, Z.; Zeng, T.; Ren, Y.; Lin, Y.; Xu, H.; Zhao, X.; Liu, Y.; Ielmini, D. Toward a generalized Bienenstock-Cooper-Munro rule for spatiotemporal learning via triplet-STDP in memristive devices. Nat. Commun. 2020, 11, 1510. [Google Scholar] [CrossRef] [PubMed]
- Boyn, S.; Grollier, J.; Lecerf, G.; Xu, B.; Locatelli, N.; Fusil, S.; Girod, S.; Carrétéro, C.; Garcia, K.; Xavier, S. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017, 8, 14736. [Google Scholar] [CrossRef]
- Chung, J.; Park, K.; Kim, G.I.; An, J.B.; Jung, S.; Choi, D.H.; Kim, H.J. Visible light-driven indium-gallium-zinc-oxide optoelectronic synaptic transistor with defect engineering for neuromorphic computing system and artificial intelligence. Appl. Surf. Sci. 2023, 610, 155532. [Google Scholar] [CrossRef]
- Kim, D.; Jang, J.T.; Yu, E.; Park, J.; Min, J.; Kim, D.M.; Choi, S.-J.; Mo, H.-S.; Cho, S.; Roy, K. Pd/IGZo/p+-Si synaptic device with self-graded oxygen concentrations for highly linear weight adjustability and improved energy efficiency. ACS Appl. Electron. Mater. 2020, 2, 2390–2397. [Google Scholar] [CrossRef]
- Yang, C.-H.; Huang, Y.-C.; Shih, L.-C.; Mao, S.-C.; Wu, J.-J.; Chen, J.-S. Harness Background Lighting for Separability Enhancement in Optical Sensing Reservoir for Temporal Signal Processing Utilizing Amorphous IGZO Neuromorphic Transistors. ACS Photonics 2024, 11, 660–672. [Google Scholar] [CrossRef]
- Zhang, T.; Fan, C.; Hu, L.; Zhuge, F.; Pan, X.; Ye, Z. A Reconfigurable All-Optical-Controlled Synaptic Device for Neuromorphic Computing Applications. ACS Nano 2024, 18, 16236–16247. [Google Scholar] [CrossRef]
- Duan, H.; Liang, L.; Wu, Z.; Zhang, H.; Huang, L.; Cao, H. IGZO/CsPbBr3-nanoparticles/IGZO neuromorphic phototransistors and their optoelectronic coupling applications. ACS Appl. Mater. Interfaces 2021, 13, 30165–30173. [Google Scholar] [CrossRef]
- Kim, J.; Kim, Y.; Kwon, O.; Kim, T.; Oh, S.; Jin, S.; Park, W.; Kwon, J.; Hong, S.; Lee, C. Modulation of synaptic plasticity mimicked in al nanoparticle-embedded IGZO synaptic transistor. Adv. Electron. Mater. 2020, 6, 1901072. [Google Scholar] [CrossRef]
- Kim, H.-S.; Park, H.; Cho, W.-J. Light-Stimulated IGZO Transistors with Tunable Synaptic Plasticity Based on Casein Electrolyte Electric Double Layer for Neuromorphic Systems. Biomimetics 2023, 8, 532. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Oh, S.; Choi, Y.; Seo, S.; Oh, M.J.; Lee, M.; Lee, W.B.; Yoo, P.J.; Cho, J.H.; Park, J. Optoelectronic synapse based on igzo-alkylated graphene oxide hybrid structure. Adv. Funct. Mater. 2018, 28, 1804397. [Google Scholar] [CrossRef]
- Jang, J.; Park, S.; Kim, D.; Kim, S. Synaptic plasticity and associative learning in IGZO-based synaptic transistor. Sens. Actuators A Phys. 2024, 376, 115641. [Google Scholar] [CrossRef]
- Park, J.; Jang, Y.; Lee, J.; An, S.; Mok, J.; Lee, S. Synaptic Transistor Based on In-Ga-Zn-O Channel and Trap Layers with Highly Linear Conductance Modulation for Neuromorphic Computing. Adv. Electron. Mater. 2023, 9, 2201306. [Google Scholar] [CrossRef]
- Park, H.; Oh, S.; Jeong, S.-H.; Kwon, O.; Seo, H.Y.; Kwon, J.-D.; Kim, Y.; Park, W.; Cho, B. Dual-Terminal Stimulated Heterosynaptic Plasticity of IGZO Memtransistor with Al2O3/TiO2 Double-Oxide Structure. ACS Appl. Electron. Mater. 2022, 4, 2923–2932. [Google Scholar] [CrossRef]
- Ouyang, W.; Teng, F.; He, J.; Fang, X. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge-carrier engineering. Adv. Funct. Mater. 2019, 29, 1807672. [Google Scholar] [CrossRef]
- Abbas, S.; Kim, J. All-metal oxide transparent photodetector for broad responses. Sens. Actuators A Phys. 2020, 303, 111835. [Google Scholar] [CrossRef]
- Alsaif, M.M.Y.A.; Kuriakose, S.; Walia, S.; Syed, N.; Jannat, A.; Zhang, B.Y.; Haque, F.; Mohiuddin, M.; Alkathiri, T.; Pillai, N. 2D SnO/In2O3 van der Waals heterostructure photodetector based on printed oxide skin of liquid metals. Adv. Mater. Interfaces 2019, 6, 1900007. [Google Scholar] [CrossRef]
- Dodda, A.; Oberoi, A.; Sebastian, A.; Choudhury, T.H.; Redwing, J.M.; Das, S. Stochastic resonance in MoS2 photodetector. Nat. Commun. 2020, 11, 4406. [Google Scholar] [CrossRef]
- Liao, F.; Deng, J.; Chen, X.; Wang, Y.; Zhang, X.; Liu, J.; Zhu, H.; Chen, L.; Sun, Q.; Hu, W. A Dual-Gate MoS2 Photodetector Based on Interface Coupling Effect. Small 2020, 16, 1904369. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Wakamura, T.; Hashisaka, M.; Watanabe, K.; Taniguchi, T.; Kumada, N. Ultrafast intrinsic optical-to-electrical conversion dynamics in a graphene photodetector. Nat. Photonics 2022, 16, 718–723. [Google Scholar] [CrossRef]
- Bai, F.; Qi, J.; Li, F.; Fang, Y.; Han, W.; Wu, H.; Zhang, Y. A high-performance self-powered photodetector based on monolayer MoS2/Perovskite heterostructures. Adv. Mater. Interfaces 2018, 5, 1701275. [Google Scholar] [CrossRef]
- Jing, H.; Peng, R.; Ma, R.-M.; He, J.; Zhou, Y.; Yang, Z.; Li, C.-Y.; Liu, Y.; Guo, X.; Zhu, Y. Flexible ultrathin single-crystalline perovskite photodetector. Nano Lett. 2020, 20, 7144–7151. [Google Scholar] [CrossRef] [PubMed]
- Leung, S.; Ho, K.; Kung, P.; Hsiao, V.K.S.; Alshareef, H.N.; Wang, Z.L.; He, J. A self-powered and flexible organometallic halide perovskite photodetector with very high detectivity. Adv. Mater. 2018, 30, 1704611. [Google Scholar] [CrossRef]
- Huang, J.; Lee, J.; Vollbrecht, J.; Brus, V.V.; Dixon, A.L.; Cao, D.X.; Zhu, Z.; Du, Z.; Wang, H.; Cho, K. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv. Mater. 2020, 32, 1906027. [Google Scholar] [CrossRef]
- Wu, Y.; Fukuda, K.; Yokota, T.; Someya, T. A highly responsive organic image sensor based on a two-terminal organic photodetector with photomultiplication. Adv. Mater. 2019, 31, 1903687. [Google Scholar] [CrossRef]
- Chow, P.C.Y.; Someya, T. Organic photodetectors for next-generation wearable electronics. Adv. Mater. 2020, 32, 1902045. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.S.; Jung, J.; Choi, D.H.; Jung, S.; Kwak, K.; Kim, H.J. Novel method for fabricating visible-light phototransistors based on a homojunction-porous IGZO thin film using mechano-chemical treatment. ACS Appl. Mater. Interfaces 2021, 13, 35981–35989. [Google Scholar] [CrossRef]
- Rho, H.Y.; Bala, A.; Sen, A.; Jeong, U.; Shim, J.; Oh, J.O.; Ju, Y.; Naqi, M.; Kim, S. Plasma-engineered amorphous metal oxide nanostructure-based low-power highly responsive phototransistor array for next-generation optoelectronics. ACS Appl. Nano Mater. 2023, 6, 15990–15999. [Google Scholar] [CrossRef]
- Jeon, Y.; Seo, J.; Yoo, H. Air-stable ambipolar charge transport behaviors of organic-inorganic hybrid bilayer and application to Au nanoparticle-based floating gate memory. J. Alloys Compd. 2023, 938, 168687. [Google Scholar] [CrossRef]
- Lenef, J.D.; Jo, J.; Trejo, O.; Mandia, D.J.; Peterson, R.L.; Dasgupta, N.P. Plasma-enhanced atomic layer deposition of p-type copper oxide semiconductors with tunable phase, oxidation state, and morphology. J. Phys. Chem. C 2021, 125, 9383–9390. [Google Scholar] [CrossRef]
- Han, Y.; Lee, S.; Kim, M.; Shin, W.; Lee, H.K.; Koo, R.; Lee, S.; Kim, C.; Yoo, H. Charge Transport Advancement in Anti-Ambipolar Transistors: Spatially Separating Layer Sandwiched between N-Type Metal Oxides and P-Type Small Molecules. Adv. Funct. Mater. 2024, 34, 2316217. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, S.-Y. In Situ IGZO/ZnON Phototransistor Free of Persistent Photoconductivity with Enlarged Spectral Responses. ACS Appl. Electron. Mater. 2022, 5, 509–519. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, W.-G.; Kang, B.H.; Kim, H.T.; Park, J.W.; Choi, D.H.; Kim, T.S.; Lim, J.H.; Kim, H.J. High photosensitive indium–gallium–zinc oxide thin-film phototransistor with a selenium capping layer for visible-light detection. ACS Appl. Mater. Interfaces 2020, 12, 10673–10680. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.; Kim, D.S.; Hong, W.-K.; Yoo, J.I.; Huang, F.; Ko, H.C.; Park, J.H.; Yoon, J. Enhanced ultraviolet photoresponse characteristics of indium gallium zinc oxide photo-thin-film transistors enabled by surface functionalization of biomaterials for real-time ultraviolet monitoring. ACS Appl. Mater. Interfaces 2021, 13, 47784–47792. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yin, X.; Chen, G.; Sang, Z.; Yang, Y.; Que, W. High-performance photodetector with a-IGZO/PbS quantum dots heterojunction. ACS Photonics 2023, 10, 790–800. [Google Scholar] [CrossRef]
- Yu, J.; Javaid, K.; Liang, L.; Wu, W.; Liang, Y.; Song, A.; Zhang, H.; Shi, W.; Chang, T.-C.; Cao, H. High-performance visible-blind ultraviolet photodetector based on IGZO TFT coupled with p–n heterojunction. ACS Appl. Mater. Interfaces 2018, 10, 8102–8109. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wang, F.; Zou, X.; Wang, L.; Liu, C.; Liu, X.; Hu, W.; Fan, Z.; Ho, J.C.; Liao, L. Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection. Adv. Mater. 2020, 32, 1907527. [Google Scholar] [CrossRef]
- Sen, A.; Park, H.; Pujar, P.; Bala, A.; Cho, H.; Liu, N.; Gandla, S.; Kim, S. Probing the efficacy of large-scale nonporous IGZO for visible-to-NIR detection capability: An approach toward high-performance image sensor circuitry. ACS Nano 2022, 16, 9267–9277. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Wang, C.; Yang, G.; Lou, Q.; Lin, Q.; Zhang, S.; Zhou, H. Monolithic Integration of Perovskite Photoabsorbers with IGZO Thin-Film Transistor Backplane for Phototransistor-Based Image Sensor. Adv. Mater. Technol. 2023, 8, 2200679. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, L.; Liu, F.; Peng, Z.; Zhang, Y.; Jiang, C. Organic-inorganic hybrid heterostructures towards long-wavelength photodetectors based on InGaZnO-Polymer. Org. Electron. 2020, 83, 105778. [Google Scholar] [CrossRef]
Device Type | Detect Gas | Detect Concentration | Responsivity | Stability | Sensing Condition | Ref. |
---|---|---|---|---|---|---|
Diode | C2H5OH | 1000 ppm | 186.1 | N/A | 250 °C | [25] |
Transistor | NO2 | 5 ppm | 500 | 40 days | RT | [29] |
Diode | NH3 | 1000 ppm | ≈1500 | 90 days | 250 °C | [54] |
Diode | NO2 | 25 ppm | ≈110 | 60 days | 250 °C | [55] |
Diode | H2 | 100 ppm | 482 | 30 days | RT | [56] |
Diode | O3 | 5 ppm | 74 | 60 days | RT | [57] |
Diode | O3 | 5 ppm | 62 | 90 days | RT | [63] |
Transistor | NO2 | 40 ppm | ≈10 | N/A | RT | [68] |
Diode | O3 | 5 ppm | 45 | 1 day | RT | [69] |
Diode | C2H5OH | 1250 ppm | 89.2 | N/A | 250 °C | [70] |
Pull−Up Device | Pull−Down Device | VDD | Gain (V/V) | Noise Margin | Additional Logic | Ref |
---|---|---|---|---|---|---|
SWNT | IGZO | 25 V | ≈8 | N/A | NAND, NOR, XOR, XNOR, ROs | [32] |
IGZO/Te | Te | 50 V | 24.7 | N/A | Ternary | [79] |
Resistor | IGZO | 5 V | 15 | N/A | NAND, NOR | [80] |
Resistor | IGZO | 10 V | 1939 | ≈8.7 V | N/A | [81] |
Resistor | IGZO | 2 V | 163 | N/A | ROs | [82] |
SnO | IGZO | 3 V | 226 | 1.79 V | ROs | [83] |
SnOx | IGZO | 10 V | 33.4 | 9.4 V | N/A | [84] |
WSe2 | IGZO | 3 V | ≈7 | N/A | Rectifier | [85] |
IGZO | IGZO | 40 V | 9.65 | 32.8 V | N/A | [86] |
BTBT/DNTT | IGZO | 20 V | ≈60 | 15 V | N/A | [87] |
Sensing Device | Sensitivity (mV/pH) | VH (mV) | RD (mV/h) | VH to Sensitivity (%) | RD to Sensitivity (%) | Ref. |
---|---|---|---|---|---|---|
IGZO/SnO2 | 57.4 | 21.1 | 46.3 | N/A | N/A | [26] |
IGZO/SnO2 | 56.4 | 5.6 | 9.8 | 10.0 | 17.3 | [98] |
IGZO/SnO2 | 383 | 107 | 32.7 | 27.9 | 8.5 | [99] |
IGZO/IGZO | 52.06 | 11 | 12.74 | 21.12 | 24.47 | [100] |
IGZO/SnO2 | 57.77 | 5.29 | 7.84 | 9.1 | 13.3 | [101] |
IGZO/SnO2 | 55.6 | 12 | 13.9 | N/A | N/A | [102] |
IGZO/SnO2 | 50.5 | 34.5 | 29 | N/A | N/A | [103] |
Device Structure | PPFmax | Gmax/Gmin | Recognition Rate (Accuracy) | Cycle | ΔT (s) | Ref. |
---|---|---|---|---|---|---|
LATP/IGZO | N/A | ≈2 | ≈90% | 50 | 0.001 s | [111] |
IGZO | ≈150% | 17.4 | ≈90% | 64 | 0.02 s | [118] |
IGZO/SnO/SnS | ≈112% | ≈82 | ≈90% | 40 | 5 s | [119] |
IGZO/PVK/IGZO | ≈300% | ≈4.7 | N/A | 45 | 5 s | [120] |
Al NPs/IGZO | ≈160% | N/A | ≈90% | 100 | 0.1 s | [121] |
Casein/IGZO | ≈170% | ≈3 | 90.5% | 30 | 0.2 s | [122] |
IGZO/Graphene oxide | 182% | 2466 | 73% | 200 | 0.05 s | [123] |
TaOX/Al2O3/IGZO | ≈130% | ≈2 | 95.1% | 20 | 0.00001 s | [124] |
TaOX/Al2O3/IGZO | N/A | 137.2 | 98.08% | 1000 | 0.001 s | [125] |
TiO2/Al2O3/IGZO | ≈150% | ≈50 | ≈90% | 200 | 0.1 s | [126] |
Device Structure | Wavelength (nm) | Responsivity (A∙W−1) | Detectivity (Jones∙W−1) | Sensitivity | EQE (%) | Ref. |
---|---|---|---|---|---|---|
HZO/HfO2/IGZO | 400–1000 | ≈2 × 104 | ≈4 × 1013 | ≈104 | ≈105 | [140] |
IGZO/ZnON | 405–635 | ≈1 | 2 × 1014 | ≈106 | ≈104 | [144] |
IGZO/Se | 405–635 | 1.39 × 103 | 3.44 × 1013 | 4.39 × 109 | 3.52 × 109 | [145] |
IGZO/BFP | 365 | 44.8 | 1.3 × 1015 | ≈2 × 108 | ≈103 | [146] |
IGZO/PbS QDs | 1064 | 0.623 | 1.3 × 1011 | ≈8.85 × 107 | 2248 | [147] |
PEDOT:PSS/ SnOX/IGZO | 320–550 | 984 | 3.3 × 1014 | ≈106 | ≈107 | [148] |
IGZO | 400–980 | 3 × 104 | 5.3 × 1017 | N/A | 107 | [149] |
Nanoporous IGZO | 405–852 | 27.4 | ≈1011 | 1.1 × 104 | N/A | [150] |
IGZO/BA2MA3Pb4I13 | 520 | 835.7 | 5.4 × 1012 | ≈105 | N/A | [151] |
IGZO(PDI−BDT−O) | 633 | 212 | 2 × 1012 | N/A | N/A | [152] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, Y.; Seo, J.; Lee, D.H.; Yoo, H. IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies. Micromachines 2025, 16, 118. https://doi.org/10.3390/mi16020118
Han Y, Seo J, Lee DH, Yoo H. IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies. Micromachines. 2025; 16(2):118. https://doi.org/10.3390/mi16020118
Chicago/Turabian StyleHan, Youngmin, Juhyung Seo, Dong Hyun Lee, and Hocheon Yoo. 2025. "IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies" Micromachines 16, no. 2: 118. https://doi.org/10.3390/mi16020118
APA StyleHan, Y., Seo, J., Lee, D. H., & Yoo, H. (2025). IGZO-Based Electronic Device Application: Advancements in Gas Sensor, Logic Circuit, Biosensor, Neuromorphic Device, and Photodetector Technologies. Micromachines, 16(2), 118. https://doi.org/10.3390/mi16020118