Research on Forced Vibration Model of End Effector Under Low-Frequency Excitation and Vibration-Suppression Technology
Abstract
:1. Introduction
2. Methodology
2.1. Formulation of the Problem
2.2. Mathematical Model and Solution
3. Parameters Analysis and Discussion
3.1. Acquisition Point
3.2. Excitation Frequency
3.3. Excitation Amplitude
4. Experimental Validation
4.1. Acquisition Point in Experiment
4.2. Excitation Frequency in Experiment
4.3. Excitation Amplitude in Experiment
5. Direct Inverse Vibration Suppression Technology Based on Mathematical Model
5.1. Theoretical Analysis and Simulation
5.2. Experimental Validation for Direct Inverse Vibration Suppression Technology
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, M.; Li, Z.; Yang, X.; Zhang, W.; Lim, C.W. Dynamic Analysis of a Deployable/Retractable Damped Cantilever Beam. Appl. Math. Mech. 2020, 41, 1321–1332. [Google Scholar] [CrossRef]
- Zhou, Y.; Headings, L.M.; Dapino, M.J. Discrete Layer Jamming for Variable Stiffness Co-Robot Arms. J. Mech. Robot. 2020, 12, 015001. [Google Scholar] [CrossRef]
- Qiu, Z.-c.; Wu, H.-x.; Ye, C.-d. Acceleration Sensors Based Modal Identification and Active Vibration Control of Flexible Smart Cantilever Plate. Aerosp. Sci. Technol. 2009, 13, 277–290. [Google Scholar] [CrossRef]
- Ondra, V.; Titurus, B. Free Vibration and Stability Analysis of a Cantilever Beam Axially Loaded by an Intermittently Attached Tendon. Mech. Syst. Signal Process. 2021, 158, 107739. [Google Scholar] [CrossRef]
- Hou, C.; Li, C.; Shan, X.; Yang, C.; Song, R.; Xie, T. A Broadband Piezo-Electromagnetic Hybrid Energy Harvester under Combined Vortex-Induced and Base Excitations. Mech. Syst. Signal Process. 2022, 171, 108963. [Google Scholar] [CrossRef]
- Zhang, H.; Sui, W.; Yang, C.; Zhang, L.; Song, R.; Wang, J. An Asymmetric Magnetic-Coupled Bending-Torsion Piezoelectric Energy Harvester: Modeling and Experimental Investigation. Smart Mater. Struct. 2021, 31, 015037. [Google Scholar] [CrossRef]
- Sohani, F.; Eipakchi, H. Linear and Nonlinear Vibrations of Variable Cross-Section Beams Using Shear Deformation Theory. ZAMM—J. Appl. Math. Mech./Z. Angew. Math. Und Mech. 2021, 101, e202000265. [Google Scholar] [CrossRef]
- Ece, M.C.; Aydogdu, M.; Taskin, V. Vibration of a Variable Cross-Section Beam. Mech. Res. Commun. 2007, 34, 78–84. [Google Scholar] [CrossRef]
- Du, Y.; Cheng, P.; Zhou, F. Free Vibration Analysis of Axial-Loaded Beams with Variable Cross Sections and Multiple Concentrated Elements. J. Vib. Control 2021, 28, 2197–2211. [Google Scholar] [CrossRef]
- Aghaei, M.N.; Moeenfard, H.; Moavenian, M. Nonlinear Extensional-Flexural Vibrations in Variable Cross Section Beams with Eccentric Intermediate Mass. Int. J. Mech. Sci. 2021, 196, 106248. [Google Scholar] [CrossRef]
- Miglioretti, F.; Carrera, E. Application of a Refined Multi-Field Beam Model for the Analysis of Complex Configurations. Mech. Adv. Mater. Struct. 2014, 22, 52–66. [Google Scholar] [CrossRef]
- Liu, T.; Zhou, C.; Yan, Z.; Chen, G.; Zhang, N. Wave Mode Control of Cantilever Slab Structure of T-Beam Bridge with Large Aspect Ratio. Adv. Civ. Eng. 2021, 2021, 6544058. [Google Scholar] [CrossRef]
- Carpenter, M.J. Using Energy Methods to Derive Beam Finite Elements Incorporating Piezoelectric Materials. J. Intell. Mater. Syst. Struct. 2016, 8, 26–40. [Google Scholar] [CrossRef]
- Liu, C.-S.; Li, B. Solving a Singular Beam Equation by the Method of Energy Boundary Functions. Math. Comput. Simul. 2021, 185, 419–435. [Google Scholar] [CrossRef]
- Xu, R.; Akay, H.; Kim, S.G. Buckled Mems Beams for Energy Harvesting from Low Frequency Vibrations. Research 2019, 2019, 1087946. [Google Scholar] [CrossRef]
- Cao, D.X.; Wang, J.J.; Gao, Y.H.; Zhang, W. Free Vibration of Variable Width Beam: Asymptotic Analysis with Fem Simulation and Experiment Confirmation. J. Vib. Eng. Technol. 2019, 7, 235–240. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Huang, D. Analytical Solution for Vibration of Functionally Graded Beams with Variable Cross-Sections Resting on Pasternak Elastic Foundations. Int. J. Mech. Sci. 2021, 191, 106084. [Google Scholar] [CrossRef]
- Yu, P.; Pang, Y.; Zhang, S.; Wang, L.; Jin, J. Bending Vibration Transfer Equations of Variable-Section Piezoelectric Laminated Beams. Compos. Struct. 2023, 312, 116887. [Google Scholar] [CrossRef]
- Cuma, Y.C.; Calim, F.F. Free Vibration Analysis of Functionally Graded Cylindrical Helices with Variable Cross-Section. J. Sound Vib. 2021, 494, 115856. [Google Scholar] [CrossRef]
- Al Rjoub, Y.S.; Hamad, A.G. Free Vibration of Axially Loaded Multi-Cracked Beams Using the Transfer Matrix Method. Int. J. Acoust. Vib. 2019, 24, 119–138. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, X.; Liu, X.; Rui, X. Transfer Matrix Method for the Free and Forced Vibration Analyses of Multi-Step Timoshenko Beams Coupled with Rigid Bodies on Springs. Appl. Math. Model. 2020, 87, 152–170. [Google Scholar] [CrossRef]
- Wu, C.C. Study on Rigid-Body Motions and Elastic Vibrations of a Free-Free Double-Tapered Beam Carrying Any Number of Concentrated Elements. J. Vib. Eng. Technol. 2022, 10, 541–558. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Tang, L.; Tian, R.; Wang, C.; Zhang, Q.; Liu, C.; Gu, F.; Ball, A.D. A Piezoelectric Energy Harvester for Freight Train Condition Monitoring System with the Hybrid Nonlinear Mechanism. Mech. Syst. Signal Process. 2022, 180, 109403. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Fan, K.; Ji, H.; Qiu, J. Investigation of an Ultra-Low Frequency Piezoelectric Energy Harvester with High Frequency up-Conversion Factor Caused by Internal Resonance Mechanism. Mech. Syst. Signal Process. 2022, 162, 108038. [Google Scholar] [CrossRef]
- Freundlich, J. Transient Vibrations of a Fractional Zener Viscoelastic Cantilever Beam with a Tip Mass. Meccanica 2021, 56, 1971–1988. [Google Scholar] [CrossRef]
- Freundlich, J. Transient Vibrations of a Fractional Kelvin-Voigt Viscoelastic Cantilever Beam with a Tip Mass and Subjected to a Base Excitation. J. Sound Vib. 2019, 438, 99–115. [Google Scholar] [CrossRef]
- Li, J.-J.; Chiu, S.-F.; Chao, S.D. Split Beam Method for Determining Mode Shapes of Cantilever Beams under Multiple Loading Conditions. J. Vib. Control 2021, 28, 3207–3217. [Google Scholar] [CrossRef]
- Jahangiri, A.; Attari, N.K.A.; Nikkhoo, A.; Waezi, Z. Nonlinear Dynamic Response of an Euler–Bernoulli Beam under a Moving Mass–Spring with Large Oscillations. Arch. Appl. Mech. 2020, 90, 1135–1156. [Google Scholar] [CrossRef]
- Najera-Flores, D.A.; Kuether, R.J. Approximating Nonlinear Response to Harmonic Base-Excitation Using Fixed-Interface Quasi-Static Modal Analysis. J. Sound Vib. 2023, 544, 117381. [Google Scholar] [CrossRef]
- Mohanty, A.; Behera, R.K. Energy Harvesting from a Cantilever Beam with a Spring-Loaded Oscillating Mass System and Base Excitation. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2022, 237, 34–48. [Google Scholar] [CrossRef]
- Latalski, J.; Warminski, J. Primary and Combined Multi-Frequency Parametric Resonances of a Rotating Thin-Walled Composite Beam under Harmonic Base Excitation. J. Sound Vib. 2022, 523, 116680. [Google Scholar] [CrossRef]
- Xu, X.; Han, Q.; Chu, F.; Parker, R.G. Vibration Suppression of a Rotating Cantilever Beam under Magnetic Excitations by Applying the Magnetostrictive Material. J. Intell. Mater. Syst. Struct. 2018, 30, 576–592. [Google Scholar] [CrossRef]
- Won, H.-I.; Lee, B.; Chung, J. Stick-Slip Vibration of a Cantilever Beam Subjected to Harmonic Base Excitation. Nonlinear Dyn. 2018, 92, 1815–1828. [Google Scholar] [CrossRef]
- Dassios, I.K.; Baleanu, D.I.; Kalogeropoulos, G.I. On non-homogeneous singular systems of fractional nabla difference equations. Appl. Math. Comput. 2014, 227, 112–131. [Google Scholar] [CrossRef]
- Song, H.; Li, R.; Hou, C.; Shan, X. A Low-Frequency Piezoelectric Actuator for Cantilever Beams: Design, Modeling, and Experimental Evaluation. IEEE Trans. Instrum. Meas. 2023, 72, 7507208. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Length | l0 | 1000 mm |
Width | b0 | 20 mm |
Height | 2h0 | 10 mm |
Length of section transition segment | lt | 105 mm |
Interval length of mutation segment | δlt | 35 mm |
Length of free end | lt’ | 55 mm |
Density | ρ | 2.7 g/cm3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Song, H.; Li, R.; Wu, J.; Shan, X.; Tan, J. Research on Forced Vibration Model of End Effector Under Low-Frequency Excitation and Vibration-Suppression Technology. Micromachines 2025, 16, 131. https://doi.org/10.3390/mi16020131
Li C, Song H, Li R, Wu J, Shan X, Tan J. Research on Forced Vibration Model of End Effector Under Low-Frequency Excitation and Vibration-Suppression Technology. Micromachines. 2025; 16(2):131. https://doi.org/10.3390/mi16020131
Chicago/Turabian StyleLi, Changqi, Henan Song, Ruirui Li, Jianwei Wu, Xiaobiao Shan, and Jiubin Tan. 2025. "Research on Forced Vibration Model of End Effector Under Low-Frequency Excitation and Vibration-Suppression Technology" Micromachines 16, no. 2: 131. https://doi.org/10.3390/mi16020131
APA StyleLi, C., Song, H., Li, R., Wu, J., Shan, X., & Tan, J. (2025). Research on Forced Vibration Model of End Effector Under Low-Frequency Excitation and Vibration-Suppression Technology. Micromachines, 16(2), 131. https://doi.org/10.3390/mi16020131