Production of Monodisperse Oil-in-Water Droplets and Polymeric Microspheres Below 20 μm Using a PDMS-Based Step Emulsification Device
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Design
2.2. Microfabrication
2.3. Chemicals
2.4. Preparation of Polymeric Microspheres
2.5. General Equipment
3. Results
3.1. Straight Nozzles
3.2. Triangular Nozzles
4. Discussion
4.1. Straight Nozzles
4.2. Triangular Nozzles
4.3. Advantages, Limitations, and Scope of the PDMS-Based SE Device
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nan, L.; Zhang, H.; Weitz, D.A.; Shum, H.C. Development and future of droplet microfluidics. Lab Chip 2024, 24, 1135–1153. [Google Scholar] [CrossRef] [PubMed]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 2021, 93, 4182–4197. [Google Scholar] [CrossRef] [PubMed]
- Long, F.; Guo, Y.; Zhang, Z.; Wang, J.; Ren, Y.; Cheng, Y.; Xu, G. Recent progress of droplet microfluidic emulsification based synthesis of functional microparticles. Glob. Chall. 2023, 7, 2300063. [Google Scholar] [CrossRef] [PubMed]
- Kawakatsu, T.; Kikuchi, Y.; Nakajima, M. Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J. Am. Oil Chem. Soc. 1997, 74, 317–321. [Google Scholar] [CrossRef]
- Shi, Z.; Lai, X.; Sun, C.; Zhang, X.; Zhang, L.; Pu, Z.; Wang, R.; Yu, H.; Li, D. Step emulsification in microfluidic droplet generation: Mechanisms and structures. Chem. Commun. 2020, 56, 9056–9066. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Duan, C.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Microfluidic step emulsification techniques based on spontaneous transformation mechanism: A review. J. Ind. Eng. Chem. 2020, 92, 18–40. [Google Scholar] [CrossRef]
- Dangla, R.; Kayi, S.C.; Baroud, C.N. Droplet microfluidics driven by gradients of confinement. Proc. Natl. Acad. Sci. USA 2013, 110, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Sahin, S.; Schroën, K. Partitioned EDGE devices for high throughput production of monodisperse emulsion droplets with two distinct sizes. Lab Chip 2015, 15, 2486–2495. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Seybold, H.; Ofner, A.; Weitz, D.A.; Studart, A.R. Wetting controls of droplet formation in step emulsification. Proc. Natl. Acad. Sci. USA 2018, 115, 9479–9484. [Google Scholar] [CrossRef] [PubMed]
- Amstad, E.; Chemama, M.; Eggersdorfer, M.; Arriaga, L.R.; Brenner, M.P.; Weitz, D.A. Robust scalable high throughput production of monodisperse drops. Lab Chip 2016, 16, 4163–4172. [Google Scholar] [CrossRef]
- Kawakatsu, T.; Komori, H.; Nakajima, M.; Kikuchi, Y.; Yonemoto, T. Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate. J. Chem. Eng. J. 1999, 32, 241–244. [Google Scholar] [CrossRef]
- Ofner, A.; Moore, D.G.; Rühs, P.A.; Schwendimann, P.; Eggersdorfer, M.; Amstad, E.; Weitz, D.A.; Studart, A.R. High-throughput step emulsification for the production of functional materials using a glass microfluidic device. Macromol. Chem. Phys. 2017, 218, 1600472. [Google Scholar] [CrossRef]
- Kobayashi, I.; Wada, Y.; Uemura, K.; Nakajima, M. Generation of uniform drops via through-hole arrays micromachined in stainless-steel plates. Microfluid. Nanofluid. 2008, 5, 677–687. [Google Scholar] [CrossRef]
- Kobayashi, I.; Hirose, S.; Katoh, T.; Zhang, Y.; Uemura, K.; Nakajima, M. High-aspect-ratio through-hole array microfabricated in a PMMA plate for monodisperse emulsion production. Microsyst. Technol. 2008, 14, 1349–1357. [Google Scholar] [CrossRef]
- Schuler, F.; Schwemmer, F.; Trotter, M.; Wadle, S.; Zengerle, R.; von Stetten, F.; Paust, N. Centrifugal step emulsification applied for absolute quantification of nucleic acids by digital droplet RPA. Lab Chip 2015, 15, 2759–2766. [Google Scholar] [CrossRef]
- Zhan, W.; Liu, Z.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Comparison of formation of bubbles and droplets in step-emulsification microfluidic devices. J. Ind. Eng. Chem. 2022, 106, 469–481. [Google Scholar] [CrossRef]
- Xia, Y.; Whitesides, G.M. Soft lithography. Angew. Chem. Int. Ed. Engl. 1998, 37, 550–575. [Google Scholar] [CrossRef]
- Postek, W.; Kaminski, T.S.; Garstecki, P. A passive microfluidic system based on step emulsification allows the generation of libraries of nanoliter-sized droplets from microliter droplets of varying and known concentrations of a sample. Lab Chip 2017, 17, 1323–1331. [Google Scholar] [CrossRef]
- Stolovicki, E.; Ziblat, R.; Weitz, D.A. Throughput enhancement of parallel step emulsifier devices by shear-free and efficient nozzle clearance. Lab Chip 2018, 18, 132–138. [Google Scholar] [CrossRef]
- Håti, A.G.; Szymborski, T.R.; Steinacher, M.; Amstad, E. Production of monodisperse droplets from viscous fluids. Lab Chip 2018, 18, 648–654. [Google Scholar] [CrossRef] [PubMed]
- de Rutte, J.M.; Koh, J.; Di Carlo, D. Scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 2019, 29, 1900071. [Google Scholar] [CrossRef]
- Shin, D.-C.; Morimoto, Y.; Sawayama, J.; Miura, S.; Takeuchi, S. Centrifuge-based step emulsification device for simple and fast generation of monodisperse picoliter droplets. Sens. Actuators B Chem. 2019, 301, 127164. [Google Scholar] [CrossRef]
- Schulz, M.; Probst, S.; Calabrese, S.; Homann, A.R.; Borst, N.; Weiss, M.; von Stetten, F.; Zengerle, R.; Paust, N. Versatile tool for droplet generation in standard reaction tubes by centrifugal step emulsification. Molecules 2020, 25, 1914. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, Z.; Hu, F.; Wu, J.; Peng, N. Massive droplet generation for digital PCR via a smart step emulsification chip integrated in a reaction tube. Analyst 2021, 146, 1559–1568. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, H.; Lin, X.; Li, M.; Zhao, Y.; Shang, L. Scalable production of biomedical microparticles via high-throughput microfluidic step emulsification. Small 2023, 19, 2206007. [Google Scholar] [CrossRef]
- Mittal, N.; Cohen, C.; Bibette, J.; Bremond, N. Dynamics of step-emulsification: From a single to a collection of emulsion droplet generators. Phys. Fluids 2014, 26, 082109. [Google Scholar] [CrossRef]
- Nalin, F.; Tirelli, M.C.; Garstecki, P.; Postek, W.; Costantini, M. Tuna-step: Tunable parallelized step emulsification for the generation of droplets with dynamic volume control to 3D print functionally graded porous materials. Lab Chip 2024, 24, 113–126. [Google Scholar] [CrossRef]
- Eggersdorfer, M.L.; Zheng, W.; Nawar, S.; Mercandetti, C.; Ofner, A.; Leibacher, I.; Koehler, S.; Weitz, D.A. Tandem emulsification for high-throughput production of double emulsions. Lab Chip 2017, 17, 936–942. [Google Scholar] [CrossRef] [PubMed]
- Opalski, A.S.; Makuch, K.; Derzsi, L.; Garstecki, P. Split or slip—Passive generation of monodisperse double emulsions with cores of varying viscosity in microfluidic tandem step emulsification system. RSC Adv. 2020, 10, 23058–23065. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Kanno, Y.; Nisisako, T. Microfluidic coupling of step emulsification and deterministic lateral displacement for producing satellite-free droplets and particles. Micromachines 2023, 14, 622. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Masui, S.; Kanno, Y.; Nisisako, T. Microfluidic step emulsification with parallel nozzles on a vertical slit. Ind. Eng. Chem. Res. 2024, 63, 10226–10233. [Google Scholar] [CrossRef]
- Nakashima, T.; Shimizu, M.; Kukizaki, M. Particle control of emulsion by membrane emulsification and its applications. Particle control of emulsion by membrane emulsification and its applications. Adv. Drug Deliv. Rev. 2000, 34, 37–56. [Google Scholar]
- Wu, W.; Zhou, S.; Hu, J.; Wang, G.; Ding, X.; Gou, T.; Sun, J.; Zhang, T.; Mu, Y. A thermosetting oil for droplet-based real-time monitoring of digital PCR and cell culture. Adv. Funct. Mater. 2018, 28, 1803559. [Google Scholar] [CrossRef]
- Bauer, W.-A.C.; Fischlechner, M.; Abell, C.; Huck, W.T.S. Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 2010, 10, 1814–1819. [Google Scholar] [CrossRef] [PubMed]
- Trantidou, T.; Elani, Y.; Parsons, E.; Ces, O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsys. Nanoeng. 2017, 3, 16091. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Masui, S.; Kanno, Y.; Nisisako, T. Upscaled production of satellite-free droplets: Step emulsification with deterministic lateral displacement. Micromachines 2024, 15, 908. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Fang, J. Hydrophilic PEO-PDMS for microfluidic applications. J. Micromech. Microeng. 2012, 22, 025012. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-Y.; Hong, L.-Y.; Chun, Y.-M.; Kim, D.-P.; Lee, C.-S. Solvent resistant PDMS microfluidic devices with hybrid inorganic/organic polymer coatings. Adv. Funct. Mater. 2009, 19, 3796–3803. [Google Scholar] [CrossRef]
- Nisisako, T. Recent advances in microfluidic production of Janus droplets and particles. Curr. Opin. Colloid Interface Sci. 2016, 25, 1–12. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tottori, N.; Choi, S.; Nisisako, T. Production of Monodisperse Oil-in-Water Droplets and Polymeric Microspheres Below 20 μm Using a PDMS-Based Step Emulsification Device. Micromachines 2025, 16, 132. https://doi.org/10.3390/mi16020132
Tottori N, Choi S, Nisisako T. Production of Monodisperse Oil-in-Water Droplets and Polymeric Microspheres Below 20 μm Using a PDMS-Based Step Emulsification Device. Micromachines. 2025; 16(2):132. https://doi.org/10.3390/mi16020132
Chicago/Turabian StyleTottori, Naotomo, Seungman Choi, and Takasi Nisisako. 2025. "Production of Monodisperse Oil-in-Water Droplets and Polymeric Microspheres Below 20 μm Using a PDMS-Based Step Emulsification Device" Micromachines 16, no. 2: 132. https://doi.org/10.3390/mi16020132
APA StyleTottori, N., Choi, S., & Nisisako, T. (2025). Production of Monodisperse Oil-in-Water Droplets and Polymeric Microspheres Below 20 μm Using a PDMS-Based Step Emulsification Device. Micromachines, 16(2), 132. https://doi.org/10.3390/mi16020132