Near-Infrared Spectral MEMS Gas Sensor for Multi-Component Food Gas Detection
Abstract
:1. Introduction
2. Detection System and Methods
2.1. Fabrication of MEMS Fabry–Perot Cavity
2.2. Construction of the Gas Detection System
2.3. Performance Test of the NIR MEMS Fabry–Perot Cavity Spectral Sensing Chip
2.4. Response and Recovery Time of the MEMS NIR Spectral Gas Sensor
2.5. Configuration of Gas Samples
2.6. Gas Samples Classification and Identification Experiment
2.7. Ethanol Concentration Grading Experiment
2.8. Spectral Data Preprocessing and Model Training
3. Results and Discussions
3.1. Classification and Identification of Mixed Gases
3.2. Recognition of the Ethanol Concentration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MEMS | Micro electromechanical system |
NIR | Near-infrared |
FT-IR | Fourier transform infrared |
CVD | Chemical vapor deposition |
DBR | Distributed Bragg reflector |
PECVD | Plasma-enhanced chemical vapor deposition |
LPCVD | Low-pressure chemical vapor deposition |
CEAS | Cavity-enhanced absorption spectroscopy |
SNV | Standard normal variate |
SVM | Support vector machine |
References
- Yang, Z.; Albrow-Owen, T.; Cai, W.; Hasan, T. Miniaturization of optical spectrometers. Science 2021, 371, eabe0722. [Google Scholar] [CrossRef] [PubMed]
- Finco, G.; Li, G.; Pohl, D.; Escalé, M.R.; Maeder, A.; Kaufmann, F.; Grange, R. Monolithic thin-film lithium niobate broadband spectrometer with one nanometre resolution. Nat. Commun. 2024, 15, 2330. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Peng, N.; Kang, J.; Onodera, T.; Yatabe, R. Identification of beef odors under different storage day and processing temperature conditions using an odor sensing system. Sensors 2024, 24, 5590. [Google Scholar] [CrossRef] [PubMed]
- Matindoust, S.; Baghaei-Nejad, M.; Abadi, M.; Zou, Z.; Zheng, L. Food quality and safety monitoring using gas sensor array in intelligent packaging. Sens. Rev. 2016, 36, 169–183. [Google Scholar] [CrossRef]
- Swetha, S.; Padmapriya, S.; Swethaa, K.; Gunasundari, B. Design of smart refrigerator using raspberry Pi. Int. J. Emerg. Technol. Innov. Eng. 2017, 3, 2394–6598. [Google Scholar]
- Hsueh, T.; Lu, C. A hybrid YSZ/SnO2/MEMS SO2 gas sensor. RSC Adv. 2019, 9, 27800–27806. [Google Scholar] [CrossRef] [PubMed]
- Dennler, N.; Drix, D.; Warner, T.; Rastogi, S.; Della Casa, C.; Ackels, T.; Schaefer, A.T.; van Schaik, A.; Schmuker, M. High-speed odor sensing using miniaturized electronic nose. Sci. Adv. 2024, 10, eadp1764. [Google Scholar] [CrossRef]
- Voss, A.; Witt, K.; Kaschowitz, T.; Poitz, W.; Ebert, A.; Roser, P.; Bär, K. Detecting cannabis use on the human skin surface via an electronic nose system. Sensors 2014, 14, 13256–13272. [Google Scholar] [CrossRef] [PubMed]
- Sui, R.; Zhang, E.; Tang, X.; Yan, W.; Liu, Y.; Zhou, H. Thermal modulation of resistance gas sensor facilitates recognition of fragrance odors. Chemosensors 2024, 12, 101. [Google Scholar] [CrossRef]
- Zarra, T.; Reiser, M.; Naddeo, V.; Belgiorno, V.; Kranert, M. Odor emissions characterization from wastewater treatment plants by different measurement methods. Chem. Eng. Trans. 2014, 40, 37–42. [Google Scholar]
- Kantojärvi, U.; Varpula, A.; Antila, T.; Holmlund, C.; Mäkynen, J.; Näsilä, A.; Mannila, R.; Rissanen, A.; Antila, J.; Disch, R.J.; et al. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR. In Proceedings of the SPIE Photonics West 2014, San Francisco, CA, USA, 1–6 February 2014; Volume 8992, pp. 46–55. [Google Scholar]
- Gasser, C.; Kilgus, J.; Harasek, M.; Lendl, B.; Brandstetter, M. Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser. Opt. Express 2018, 26, 12169–12179. [Google Scholar] [CrossRef] [PubMed]
- Hundt, P.; Müller, M.; Mangold, M.; Tuzson, B.; Scheidegger, P.; Looser, H.; Hüglin, C.; Emmenegger, L. Mid-IR spectrometer for mobile, real-time urban NO2 measurements. Atmos. Meas. Tech. 2018, 11, 2669–2681. [Google Scholar] [CrossRef]
- Yoshimura, R.; Kohtoku, M.; Fujii, K.; Sakamoto, T.; Sakai, Y. Highly sensitive laser based trace-gas sensor technology and its application to stable isotope ratio analysis. NTT Tech. Rev. 2014, 12, 45–50. [Google Scholar] [CrossRef]
- Rafael, L.; Ribessi, R.L.; Neves, T.D.A.; Rohwedder, J.J.; Pasquini, C.; Raimundo, I.M.; Wilk, A.; Kokoric, V.; Mizaikoff, B. iHEART: A miniaturized near-infrared in-line gas sensor using heart-shaped substrate-integrated hollow waveguides. Analyst 2016, 141, 5298–5303. [Google Scholar]
- Niinomi, T.; Nakao, A.; Hanai, Y.; Ushio, H.; Hayashi, T.; Nakatani, M. A compact 16-Channel input thermally adsorption-/desorption-controlled intelligent odor sensing system. IEEE Sens. J. 2024, 24, 9334–9340. [Google Scholar] [CrossRef]
- Mendes, L.B.; Ogink, N.W.; Edouard, N.; Van Dooren, H.J.C.; Tinôco, I.D.F.F.; Mosquera, J. NDIR gas sensor for spatial monitoring of carbon dioxide concentrations in naturally ventilated livestock buildings. Sensors 2015, 15, 11239–11257. [Google Scholar] [CrossRef]
- Esfahani, S.; James, A. Low cost optical electronic nose for biomedical applications. Proceedings 2017, 1, 589. [Google Scholar] [CrossRef]
- Klakegg, S.; Goncalves, J.; Berkel, N.; Luo, C.; Hosio, S.; Kostakos, V. Towards commoditised near infrared spectroscopy. In Proceedings of the 2017 Conference on Designing Interactive Systems, DIS 2017, Edinburgh, UK, 10–14 June 2017. [Google Scholar]
- Fortes, P.; Wilk, A. IHWG-μNIR: A miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer. Analyst 2014, 139, 3572–3576. [Google Scholar]
- Zeng, S.; Trontz, A.; Cao, Z.; Xiao, H.; Dong, J. Characterizing the gas adsorption dependent dielectric constant for silicalite nanoparticles at microwave frequencies by a coaxial cable Fabry-Pérot interferometric sensing method. Madridge J. Nanotechnol. Nanosci. 2018, 3, 100–107. [Google Scholar] [CrossRef]
- Vlk, M.; Datta, A.; Alberti, S.; Yallew, H.D.; Mittal, V.; Murugan, G.S.; Jágerská, J. Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl. 2021, 10, 26. [Google Scholar] [CrossRef]
- Lim, J.; Shim, J.; Kim, I.; Kim, S.K.; Lim, H.; Ahn, S.Y.; Park, J.; Geum, D.; Kim, S. Ultrasensitive mid-infrared optical gas sensor based on germanium-on-insulator photonic circuits with limit-of-detection at sub-ppm level. ACS Photonics 2024, 11, 4268–4278. [Google Scholar] [CrossRef]
- Yallew, H.D.; Vlk, M.; Datta, A.; Alberti, S.; Zakoldaev, R.A.; Høvik, J.; Aksnes, A.; Jágerská, J. Sub-ppm methane detection with mid-infrared slot waveguides. ACS Photonics 2023, 10, 4282–4289. [Google Scholar] [CrossRef]
- Liu, M.; Gray, R.M.; Costa, L.; Markus, C.R.; Roy, A.; Marandi, A. Mid-infrared cross-comb spectroscopy. Nat. Commun. 2023, 14, 1044. [Google Scholar] [CrossRef] [PubMed]
- Ottonello-Briano, F.; Errando-Herranz, C.; Rödjegård, H.; Martin, H.; Sohlström, H.; Gylfason, K.B. Carbon dioxide absorption spectroscopy with a mid-infrared silicon photonic waveguide. Opt. Lett. 2020, 45, 109–112. [Google Scholar] [CrossRef]
- Kim, I.; Lim, J.; Shim, J.; Park, J.; Ahn, S.Y.; Lim, H.; Kim, S. Freestanding germanium photonic crystal waveguide for a highly sensitive and compact mid-infrared on-chip gas sensor. ACS Sens. 2024, 9, 5116–5126. [Google Scholar] [CrossRef] [PubMed]
- Tuohiniemi, M.; Näsilä, A.; Akujärvi, A.; Blomberg, M. MOEMS Fabry–Pérot interferometer with point-anchored Si-air mirrors for middle infrared. J. Micromech. Microeng. 2014, 24, 95019. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Xing, H.; Ding, H.; Luo, J.; Liu, H.; Kong, X.; Xu, F. Recent progress in MEMS fiber-optic Fabry–Perot pressure sensors. Sensors 2024, 24, 1079. [Google Scholar] [CrossRef]
- Zhao, M.; Jiang, K.; Bai, H.; Wang, H.; Wei, X. A MEMS based Fabry–Pérot accelerometer with high resolution. Microsyst. Technol. 2020, 26, 1961–1969. [Google Scholar] [CrossRef]
- Manzardo, O.; Herzig, H.; Marxer, R.; Nico, F. Miniaturized time-scanning Fourier transform spectrometer based on silicon technology. Opt. Lett. 1999, 24, 1705–1707. [Google Scholar] [CrossRef]
- Saadany, B.; Bourouina, T.; Malak, M.; Kubota, M.; Mita, Y.; Khalil, D. A miniature Michelson-Interferometer using vertical Bragg mirrors on SOI. In Proceedings of the IEEE/LEOS International Conference on Optical MEMS and Their Applications Conference, Big Sky, MT, USA, 21–24 August 2006. [Google Scholar]
- Erfan, M.; Sabry, Y.; Sakr, M.; Mortada, B.; Medhat, M.; Khalil, D. On-chip micro–electro–mechanical system Fourier transform infrared (MEMS FT-IR) spectrometer-based gas sensing. Appl. Spectrosc. 2016, 70, 897–904. [Google Scholar] [CrossRef]
- Ma, H.; Wang, T.; Li, B.; Cao, W.; Zeng, M.; Yang, J.; Su, Y.; Hu, N.; Zhou, Z.; Yang, Z. A low-cost and efficient electronic nose system for quantification of multiple indoor air contaminants utilizing HC and PLSR. Sens. Actuators B Chem. 2022, 350, 130768. [Google Scholar] [CrossRef]
- Wang, L.; Li, F.; Yang, C.; Feng, L.; Cao, X. Performance evaluation of lightweight pattern recognition algorithms for portable environmental monitoring electronic noses. Build. Environ. 2025, 269, 112446. [Google Scholar] [CrossRef]
- Liu, C.; Miyauchi, H.; Hayashi, K. DeepSniffer: A meta-learning-based chemiresistive odor sensor for recognition and classification of aroma oils. Sens. Actuators B Chem. 2022, 351, 130960. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Oshita, M.; Saito, S.; Kan, T. Near-infrared spectroscopic gas detection using a surface plasmon resonance photodetector with 20 nm resolution. ACS Appl. Nano Mater. 2021, 4, 13405–13412. [Google Scholar] [CrossRef]
Classification Algorithm | Accuracy |
---|---|
Decision tree | 56.9% |
Linear discriminant analysis | 75.0% |
K-NN | 82.8% |
SVM | 91.4% |
Classification Algorithm | Accuracy |
---|---|
Decision tree | 73.0% |
Linear discriminant analysis | 57.1% |
K-NN | 87.3% |
SVM | 92.6% |
Sensor Type | Gas Type | Simultaneous Detection of Multiple Gases | Number of Sensors | Accuracy (Highest) | Detection Limit | Reference |
---|---|---|---|---|---|---|
Commercial MOS | Air contaminants | Yes (binary gas mixtures) | 4 | 95.7% | N/A | [34] |
Chemically resistive gas sensors | Air contaminants | Yes | 8 | 95.14% | N/A | [35] |
Chemiresistive odor sensor | Oil gas | Yes | 24 | 93.9% | N/A | [36] |
NIR spectral gas sensor | Ethanol | No | 1 | N/A | 1.5% | [37] |
NIR spectral gas sensor | Natural gases | Yes | 1 | 95% | 1.42% @ 30 s (propane) 1.67% @ 30 s (butane) | [15] |
MEMS NIR spectral gas sensor | Ethanol, Korean kimchi, durian pulp | Yes | 1 | 96% | 369 ppm @ 5 s (ethanol) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Tan, Y.; Wang, Y.; Chen, G.; Xia, W.; Zhou, G.; Luo, H.; Liu, H.; Gong, T.; Zhang, X. Near-Infrared Spectral MEMS Gas Sensor for Multi-Component Food Gas Detection. Micromachines 2025, 16, 135. https://doi.org/10.3390/mi16020135
Yan X, Tan Y, Wang Y, Chen G, Xia W, Zhou G, Luo H, Liu H, Gong T, Zhang X. Near-Infrared Spectral MEMS Gas Sensor for Multi-Component Food Gas Detection. Micromachines. 2025; 16(2):135. https://doi.org/10.3390/mi16020135
Chicago/Turabian StyleYan, Xiaojian, Yao Tan, Yi Wang, Gongdai Chen, Weigao Xia, Gang Zhou, Hongliang Luo, Hao Liu, Tianxun Gong, and Xiaosheng Zhang. 2025. "Near-Infrared Spectral MEMS Gas Sensor for Multi-Component Food Gas Detection" Micromachines 16, no. 2: 135. https://doi.org/10.3390/mi16020135
APA StyleYan, X., Tan, Y., Wang, Y., Chen, G., Xia, W., Zhou, G., Luo, H., Liu, H., Gong, T., & Zhang, X. (2025). Near-Infrared Spectral MEMS Gas Sensor for Multi-Component Food Gas Detection. Micromachines, 16(2), 135. https://doi.org/10.3390/mi16020135