Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric–Triboelectric Harvesting Mechanisms
Abstract
:1. Introduction
2. Working Principles
3. Device Configuration
4. Theoretical Lumped Parameter Model
Simulated Linear Analysis
5. Experimental Setup
6. Results and Discussion
6.1. Experimental Results
6.2. Validation of the Theoretical Model
6.3. Non-Linear Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abumarar, H.; Ibrahim, A. Parametric Investigation of Bistable Vibro-impact Triboelectric Energy Harvester Using Frequency Up-Conversion. In Proceedings of the 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS), Denton, TX, USA, 14–16 April 2023; pp. 1–5. [Google Scholar]
- Qaseem, Q.; Ibrahim, A. Enhancing the Bandwidth of a Vibro-impact Cantilever Beam Triboelectric Harvester Using Repulsive Magnetic Nonlinearity. In Proceedings of the 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS), Denton, TX, USA, 14–16 April 2023; pp. 1–4. [Google Scholar]
- Khaligh, A.; Zeng, P.; Zheng, C. Kinetic energy harvesting using piezoelectric and electromagnetic technologies—State of the art. IEEE Trans. Ind. Electron. 2010, 57, 850–860. [Google Scholar] [CrossRef]
- Bhuiyan, R.H.; Saint Pierre, A.; Hossain, S. Energy harvesting for disaster emergency networks: Powering future disaster response systems. J. Netw. Comput. Appl. 2018, 120, 1–12. [Google Scholar]
- Dong, B.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414. [Google Scholar] [CrossRef]
- Atmeh, M.; Athey, C.; Ramini, A.; Barakat, N.; Ibrahim, A. Performance analysis of triboelectric energy harvester designs for knee implants. Health Monit. Struct. Biol. Syst. XV 2021, 11593, 221–231. [Google Scholar]
- Donyaparastlivari, L.; Atmeh, M.; Indic, P.; Ibrahim, A. A feasibility analysis of triboelectric energy harvester for hip implants. In Proceedings of the 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS), Denton, TX, USA, 14–16 April 2023; pp. 1–4. [Google Scholar]
- Fedaa, A.; Donyaparastlivari, L.; Ghorshi, S.A.; Zabihollah, A.; Ibrahim, A.; Souliman, M.I. Integrating piezoelectric sensors for enhanced failure prediction of residential buildings in hurricane. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2024, 12949, 6–15. [Google Scholar]
- Roundy, S.; Wright, P.K.; Rabaey, J. Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations; Springer Science & Business Media: New York, NY, USA, 2004. [Google Scholar]
- Priya, S. Advances in energy harvesting using low profile piezoelectric transducers. J. Electroceram. 2007, 19, 167–184. [Google Scholar] [CrossRef]
- Tang, X.; Zuo, L. Enhanced vibration energy harvesting using dual-mass systems. J. Sound Vib. 2011, 330, 5199–5209. [Google Scholar] [CrossRef]
- Wang, W.; Tang, L.; Yang, Y. Broadband vibration energy harvesting techniques. Appl. Energy 2020, 275, 115353. [Google Scholar]
- Qaseem, Q.; Ibrahim, A. Magnetic Bistability for a Wider Bandwidth in Vibro-Impact Triboelectric Energy Harvesters. Micromachines 2023, 14, 1008. [Google Scholar] [CrossRef]
- Qaseem, Q.; Ibrahim, A. A vibro-impact triboelectric energy harvester with magnetic bistability for wide bandwidth. Act. Passiv. Smart Struct. Integr. Syst. XVII 2023, 12483, 270–283. [Google Scholar]
- Abumarar, H.; Ibrahim, A. Theoretical Evaluation of Nonlinear Frequency Up-Conversion Triboelectric Harvester. In Proceedings of the 2023 IEEE 16th Dallas Circuits and Systems Conference (DCAS), Denton, TX, USA, 14–16 April 2023; pp. 1–5. [Google Scholar]
- Atmeh, M.; Ibrahim, A.; Ramini, A. Static and Dynamic Analysis of a Bistable Frequency Up-Converter Piezoelectric Energy Harvester. Micromachines 2023, 14, 261. [Google Scholar] [CrossRef] [PubMed]
- Abumarar, H.; Ibrahim, A. A nonlinear impact-driven triboelectric vibration energy harvester for frequency up-conversion. Micromachines 2023, 14, 1082. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Ibrahim, A. A two-degree-of-freedom vibro-impact triboelectric energy harvester for larger bandwidth. J. Sound Vib. 2023, 563, 117798. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hassan, M. Extended bandwidth of 2DOF double impact triboelectric energy harvesting: Theoretical and experimental verification. Appl. Energy 2023, 333, 120593. [Google Scholar] [CrossRef]
- Khan, F.U. A vibration-based electromagnetic and piezoelectric hybrid energy harvester. Int. J. Energy Res. 2020, 44, 6894–6916. [Google Scholar] [CrossRef]
- Pyo, S.; Kwon, D.-S.; Ko, H.-J.; Eun, Y.; Kim, J. Frequency up-conversion hybrid energy harvester combining piezoelectric and electromagnetic transduction mechanisms. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 9, 241–251. [Google Scholar] [CrossRef]
- Lu, Z.-Q.; Chen, J.; Ding, H.; Chen, L.-Q. Two-span piezoelectric beam energy harvesting. Int. J. Mech. Sci. 2020, 175, 105532. [Google Scholar] [CrossRef]
- Jung, W.-S.; Kang, M.-G.; Moon, H.G.; Baek, S.-H.; Yoon, S.-J.; Wang, Z.-L.; Kim, S.-W.; Kang, C.-Y. High output piezo/triboelectric hybrid generator. Sci. Rep. 2015, 5, 9309. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Bowen, C.; Roscow, J.; Zhang, Y.; Dang, D.K.; Kim, E.J.; Misra, R.D.K.; Deng, L.; Chung, J.S.; Hur, S.H. Micro-scale to nano-scale generators for energy harvesting: Self powered piezoelectric, triboelectric and hybrid devices. Phys. Rep. 2019, 792, 1–33. [Google Scholar] [CrossRef]
- Li, Z.; Saadatnia, Z.; Yang, Z.; Naguib, H. A hybrid piezoelectric-triboelectric generator for low-frequency and broad-bandwidth energy harvesting. Energy Convers. Manag. 2018, 174, 188–197. [Google Scholar] [CrossRef]
- Nazar, A.M.; Egbe, K.-J.I.; Jiao, P. Hybrid piezoelectric and triboelectric nanogenerators for energy harvesting and walking sensing. Energy Technol. 2022, 10, 2200063. [Google Scholar] [CrossRef]
- He, W.; Qian, Y.; Lee, B.S.; Zhang, F.; Rasheed, A.; Jung, J.-E.; Kang, D.J. Ultrahigh output piezoelectric and triboelectric hybrid nanogenerators based on ZnO nanoflakes/polydimethylsiloxane composite films. ACS Appl. Mater. Interfaces 2018, 10, 44415–44420. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; He, Y.; Boyer, C.; Kalantar-Zadeh, K.; Peng, S.; Chu, D.; Wang, C.H. Recent developments of hybrid piezo–triboelectric nanogenerators for flexible sensors and energy harvesters. Nanoscale Adv. 2021, 3, 5465–5486. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Zhang, X.; Liu, W.; Sun, X.; Peng, X.; Zhang, H. Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism. Sci. China Technol. Sci. 2013, 56, 1835–1841. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, Q.; Zhang, W.; Du, X.; Zhang, Y.; Gong, S.; Ren, K.; Sun, Q.; Wang, Z.L. Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting. Nano Energy 2019, 57, 440–449. [Google Scholar] [CrossRef]
- Shawon, S.M.A.Z.; Sun, A.X.; Vega, V.S.; Chowdhury, B.D.; Tran, P.; Carballo, Z.D.; Tolentino, J.A.; Li, J.; Rafaqut, M.S.; Danti, S.; et al. Piezo-tribo dual effect hybrid nanogenerators for health monitoring. Nano Energy 2021, 82, 105691. [Google Scholar] [CrossRef]
- Zi, Y.; Lin, L.; Wang, J.; Wang, S.; Chen, J.; Fan, X.; Yang, P.-K.; Yi, F.; Wang, Z.L. Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv. Mater. 2015, 27, 2340–2347. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Wang, X. A hybrid piezoelectric and triboelectric nanogenerator with PVDF nanoparticles and leaf-shaped microstructure PTFE film for scavenging mechanical energy. Adv. Mater. Interfaces 2018, 5, 1700750. [Google Scholar] [CrossRef]
- Suo, G.; Yu, Y.; Zhang, Z.; Wang, S.; Zhao, P.; Li, J.; Wang, X. Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl. Mater. Interfaces 2016, 8, 34335–34341. [Google Scholar] [CrossRef]
- Park, J.; Yun, K.-S. Hybrid energy harvester based on piezoelectric and triboelectric effects. In Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 24–28 January 2016; pp. 41–42. [Google Scholar]
- Zhao, H.; Ouyang, H.; Zhang, H.C. A nonresonant triboelectric-electromagnetic energy harvester via a vibro-impact mechanism for low-frequency multi-directional excitations. Nano Energy 2023, 107, 108123. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, H.; Ding, W.; Wang, Y.C.; Zhang, L.; Wang, Z.L. A hybridized triboelectric-electromagnetic water wave energy harvester based on a magnetic sphere. ACS Nano 2019, 13, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Gao, Q.; Cao, Y.; Yang, Y.; Liu, S.; Wang, Z.L.; Cheng, T. Optimization strategy of wind energy harvesting via triboelectric-electromagnetic flexible cooperation. Appl. Energy 2022, 307, 118311. [Google Scholar] [CrossRef]
- Gürgöze, M. On the representation of a cantilevered beam carrying a tip mass by an equivalent spring–mass system. J. Sound Vib. 2005, 282, 538–542. [Google Scholar] [CrossRef]
- Singiresu, S.R. Mechanical Vibrations; Addison Wesley: Boston, MA, USA, 1995. [Google Scholar]
- Ibrahim, A.; Ramini, A.; Towfighian, S. Triboelectric energy harvester with large bandwidth under harmonic and random excitations. Energy Rep. 2020, 6, 2490–2502. [Google Scholar] [CrossRef]
- Vibration Research. Vibration Control & Analysis Equipment. Available online: https://vibrationresearch.com/ (accessed on 30 January 2025).
- Labworks Inc. Vibration Test Systems and Equipment. Available online: https://www.labworks-inc.com/ (accessed on 30 January 2025).
Name | Symbol | Beam I | Beam II | Tribo. | Piezo. |
---|---|---|---|---|---|
Length (cm) | 8.7 | 12 | 2 | 7 | |
Width (cm) | 2 | 2 | 2 | 2 | |
Thickness (mm) | 1.5 | 1 | 0.5 | 0.5 | |
Young’s modulus (GPa) | 69 | 69 | - | - | |
Density (kg/m3) | 2700 | 2700 | - | - | |
Tip mass (g) | 11 | 11 | - | - | |
Damping (Ns/m) | - | - | |||
Average Coupling Damping | - | - | |||
Impact Damping (Ns/m) | - | 3000 | - | - | |
Impact Stiffness (N/m) | - | 100 | - | - | |
Space permittivity | - | - | - | ||
Dielectric constant | - | - | 0.0001 | - | |
Air gap (mm) | - | - | 0.4 | - | |
Average Surface Charge Density (C/m2) | - | - | - | ||
Piezoelectric constant (mm/V) | - | - | - | 0.15 | |
Piezoelectric capacity ( nF ) | - | - | - | 72 | |
Resistance (M) | - | - | 1 | 1 |
g-Level | Piezoelectric Power (W) | Triboelectric Power (W) |
---|---|---|
0.1 g | 0.038 | 0.014 |
0.3 g | 0.239 | 0.147 |
0.5 g | 0.382 | 0.240 |
0.7 g | 0.593 | 0.653 |
0.9 g | 0.664 | 0.492 |
Description | Beam I | Beam II |
---|---|---|
10 Hz | ||
15 Hz | ||
20 Hz | ||
30 Hz | ||
43 Hz | ||
50 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghamaz, M.; Donyaparastlivari, L.; Ibrahim, A. Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric–Triboelectric Harvesting Mechanisms. Micromachines 2025, 16, 182. https://doi.org/10.3390/mi16020182
Alghamaz M, Donyaparastlivari L, Ibrahim A. Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric–Triboelectric Harvesting Mechanisms. Micromachines. 2025; 16(2):182. https://doi.org/10.3390/mi16020182
Chicago/Turabian StyleAlghamaz, Mohammad, Leila Donyaparastlivari, and Alwathiqbellah Ibrahim. 2025. "Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric–Triboelectric Harvesting Mechanisms" Micromachines 16, no. 2: 182. https://doi.org/10.3390/mi16020182
APA StyleAlghamaz, M., Donyaparastlivari, L., & Ibrahim, A. (2025). Dynamic Response and Energy Conversion of Coupled Cantilevers with Dual Piezoelectric–Triboelectric Harvesting Mechanisms. Micromachines, 16(2), 182. https://doi.org/10.3390/mi16020182