Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation
Abstract
:1. Introduction
2. Simulation
2.1. Deposition Velocity
2.2. Simulation Model
3. Simulation Result
3.1. The Deposition Results of OH* at Different Times When Deposited at 1000 m/s
3.2. The Deposition Results of OH* at Different Time When Deposited at 5500 m/s
3.3. The Deposition Results of OH* at Different Times When Deposited at 10,000 m/s
3.4. Results of Different Speeds at an Inclined-Edge Scratch
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, P.R.; Liu, F.Q.; Wang, H.; Li, H.; Gou, Y.Z. A review of third generation SiC fibers and SiCf/SiC composites. J. Mater. Sci. Technol. 2019, 35, 2743–2750. [Google Scholar] [CrossRef]
- Chen, S.L.; Li, W.J.; Li, X.X.; Yang, W.Y. One-dimensional SiC nanostructures: Designed growth, properties, and applications. Prog. Mater. Sci. 2019, 104, 138–214. [Google Scholar] [CrossRef]
- Wu, R.B.; Zhou, K.; Yue, C.Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60. [Google Scholar] [CrossRef]
- DiMarino, C.; Wang, J.; Burgos, R.; Boroyevich, D. A high-power-density, high-speed gate driver for a 10 kV SiC MOSFET module. In Proceedings of the 2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, USA, 14–17 August 2017; pp. 629–634. [Google Scholar] [CrossRef]
- Lee, H.; Smet, V.; Tummala, R. A Review of SiC Power Module Packaging Technologies: Challenges, Advances, and Emerging Issues. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 239–255. [Google Scholar] [CrossRef]
- Gao, Y.F.; Chen, Y. Sawing stress of SiC single crystal with void defect in diamond wire saw slicing. Int. J. Adv. Manuf. Technol. 2019, 103, 1019–1031. [Google Scholar] [CrossRef]
- Liu, J.T.; Kang, R.K.; Dong, Z.G.; Zheng, F.F.; Zeng, Y.F.; Bao, Y. Experimental investigation of damage formation and material removal in ultrasonic assisted grinding of RBSiC. Mater. Res. Express 2020, 7, 125202. [Google Scholar] [CrossRef]
- Lai, Z.; Huang, H.; Hu, Z.; Liao, X. Dynamic model and machining mechanism of wire sawing. J. Mater. Process Technol. 2023, 311, 117820. [Google Scholar] [CrossRef]
- Wang, W.; Lu, X.; Wu, X.; Zhang, Y.; Wang, R.; Yang, D.; Pi, X. Chemical-Mechanical Polishing of 4H Silicon Carbide Wafers. Adv. Mater. Interfaces 2023, 10, 2202369. [Google Scholar] [CrossRef]
- Hsieh, C.-H.; Chang, C.-Y.; Hsiao, Y.-K.; Chen, C.-C.A.; Tu, C.-C.; Kuo, H.-C. Recent Advances In Silicon Carbide Chemical Mechanical Polishing Technologies. Micromachines 2022, 13, 1752. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.W.; Yamamura, K.; Deng, H. Plasma-assisted polishing for atomic surface fabrication of single crystal SiC. Acta Phys. Sin. 2021, 70. [Google Scholar] [CrossRef]
- Kawaguchi, K.; Wang, Y.; Xu, J.; Ootani, Y.; Higuchi, Y.; Ozawa, N.; Kubo, M. Cooperative roles of chemical reactions and mechanical friction in chemical mechanical polishing of gallium nitride assisted by OH radicals: Tight-binding quantum chemical molecular dynamics simulations. Phys. Chem. Chem. Phys. 2021, 23, 4075–4084. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Z.W.; Tang, M.L.; Wang, Y.; Sun, J.T.; He, Y. Atomistic removal mechanisms of nano polishing single-crystal SiC in hydroxyl free radical aqueous solution. Phys. Scr. 2023, 98, 085404. [Google Scholar] [CrossRef]
- Sun, R.; Kinoshita, R.; Aoki, K.; Hayakawa, S.; Hori, K.; Yasuda, K.; Ohkubo, Y.; Yamamura, K. Oxidation mechanism of 4H-SiC in slurry-less ECMP with weak alkaline electrolyte. CIRP Ann.-Manuf. Technol. 2024, 73, 277–280. [Google Scholar] [CrossRef]
- Deng, H.; Endo, K.; Yamamura, K. Damage-free finishing of CVD-SiC by a combination of dry plasma etching and plasma-assisted polishing. Int. J. Mach. Tools Manuf. 2017, 115, 38–46. [Google Scholar] [CrossRef]
- Deng, H.; Ueda, M.; Yamamura, K. Characterization of 4H-SiC (0001) surface processed by plasma-assisted polishing. Int. J. Adv. Manuf. Technol. 2014, 72, 1–7. [Google Scholar] [CrossRef]
- Shen, X.; Tu, Q.; Deng, H.; Jiang, G.; Yamamura, K. Mechanism analysis on finishing of reaction-sintered silicon carbide by combination of water vapor plasma oxidation and ceria slurry polishing. Opt. Eng. 2015, 54, 055106. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Z.; Tang, M.; Sun, J.; Liu, C.; Gao, X. Mechanism of chemical and mechanical mutual promotion in photocatalysis-assisted chemical mechanical polishing for single-crystal SiC. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2022, 236, 11464–11478. [Google Scholar] [CrossRef]
- Yan, Q.; Wang, X.; Xiong, Q.; Lu, J.; Liao, B. The influences of technological parameters on the ultraviolet photocatalytic reaction rate and photocatalysis-assisted polishing effect for SiC. J. Cryst. Growth 2020, 531, 125379. [Google Scholar] [CrossRef]
- Deng, J.Y.; Pan, J.S.; Zhang, Q.X.; Yan, Q.S.; Lu, J.B. The mechanism of Fenton reaction of hydrogen peroxide with single crystal 6H-SiC substrate. Surf. Interfaces 2020, 21, 100730. [Google Scholar] [CrossRef]
- Lu, J.B.; Chen, R.; Liang, H.Z.; Yan, Q.S. The influence of concentration of hydroxyl radical on the chemical mechanical polishing of SiC wafer based on the Fenton reaction. Precis. Eng.-J. Int. Soc. Precis. Eng. Nanotechnol. 2018, 52, 221–226. [Google Scholar] [CrossRef]
- Hu, D.; Li, H.; Lu, J.; Yan, Q.; Xiong, Q.; Huang, Z.; Zhang, F. Study on heterogeneous Fenton reaction parameters for pol-ishing single-crystal SiC using magnetorheological elastomers polishing pads. Smart Mater. Struct. 2023, 32, 025003. [Google Scholar] [CrossRef]
- Yamamura, K.; Takiguchi, T.; Ueda, M.; Deng, H.; Hattori, A.N.; Zettsu, N. Plasma assisted polishing of single crystal SiC for obtaining atomically flat strain-free surface. CIRP Ann. 2011, 60, 571–574. [Google Scholar] [CrossRef]
- Deng, H.; Takiguchi, T.; Ueda, M.; Hattori, A.N.; Zettsu, N.; Yamamura, K. Damage-Free Dry Polishing of 4H-SiC Combined with Atmospheric-Pressure Water Vapor Plasma Oxidation. Jpn. J. Appl. Phys. 2011, 50, 08JG05. [Google Scholar] [CrossRef]
- Deng, H.; Endo, K.; Yamamura, K. Comparison of thermal oxidation and plasma oxidation of 4H-SiC (0001) for surface flattening. Appl. Phys. Lett. 2014, 104, 101608. [Google Scholar] [CrossRef]
- Yan, D.; Huang, H.; Huang, Y.; Yang, H.; Duan, N. Study on OH radical oxidation of 4H-SiC in plasma based on ReaxFF molecular dynamics simulation. J. Mol. Liq. 2024, 400, 124573. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Iza, F.; Brandenburg, R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017, 26, 123002. [Google Scholar] [CrossRef]
- Pelletier, J.; Anders, A. Plasma-blased ion implantation and deposition: A review of physics, technology, and applications. IEEE Trans. Plasma Sci. 2005, 33, 1944–1959. [Google Scholar] [CrossRef]
- Liu, J.Y.; Li, Y.H.; Chen, Y.; Zhou, Y.Y.; Wang, S.S.; Yuan, Z.Z.; Jin, Z.J.; Liu, X. A review of low-temperature plasma-assisted machining: From mechanism to application. Front. Mech. Eng. 2023, 18, 18. [Google Scholar] [CrossRef]
- Dowling, D.P.; Stallard, C.P. Achieving enhanced material finishing using cold plasma treatments. Trans. Inst. Met. Finish. 2015, 93, 119–125. [Google Scholar] [CrossRef]
- Kambara, M.; Kawaguchi, S.; Lee, H.J.; Ikuse, K.; Hamaguchi, S.; Ohmori, T.; Ishikawa, K. Science-based, data-driven developments in plasma processing for material synthesis and device-integration technologies. Jpn. J. Appl. Phys. 2023, 62, SA0803. [Google Scholar] [CrossRef]
- Bonizzoni, G.; Vassallo, E. Plasma physics and technology; industrial applications. Vacuum 2002, 64, 327–336. [Google Scholar] [CrossRef]
- Reuter, S.; von Woedtke, T.; Weltmann, K.-D. The kINPen-a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J. Phys. D-Appl. Phys. 2018, 51, 233001. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, Z.; Chen, X.; Li, X.; Wang, X. A Numerical Investigation on the Effects of Water Vapor on Electron Energy and OH Production in Atmospheric-Pressure He/H2O and Ar/H2O Plasma Jets. IEEE Trans. Plasma Sci. 2019, 47, 1593–1604. [Google Scholar] [CrossRef]
- Newsome, D.A.; Sengupta, D.; van Duin, A.C.T. High-Temperature Oxidation of SiC-Based Composite: Rate Constant Calculation from ReaxFF MD Simulations, Part II. J. Phys. Chem. C 2013, 117, 5014–5027. [Google Scholar] [CrossRef]
- Newsome, D.A.; Sengupta, D.; Foroutan, H.; Russo, M.F.; van Duin, A.C.T. Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I. J. Phys. Chem. C 2012, 116, 16111–16121. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.-J.; Xu, F. ReaxFF molecular dynamics study on oxidation behavior of 3C-SiC: Polar face effects. Chin. Phys. B 2015, 24, 096203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, D.; Huang, H.; Xue, M.; Duan, N. Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation. Micromachines 2025, 16, 184. https://doi.org/10.3390/mi16020184
Yan D, Huang H, Xue M, Duan N. Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation. Micromachines. 2025; 16(2):184. https://doi.org/10.3390/mi16020184
Chicago/Turabian StyleYan, Dongxiao, Hui Huang, Mingpu Xue, and Nian Duan. 2025. "Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation" Micromachines 16, no. 2: 184. https://doi.org/10.3390/mi16020184
APA StyleYan, D., Huang, H., Xue, M., & Duan, N. (2025). Mechanism of OH*-Modified 4H-SiC Surface with Scratches Based on ReaxFF MD Simulation. Micromachines, 16(2), 184. https://doi.org/10.3390/mi16020184