Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant
Abstract
:1. Introduction
2. Integration Concept of the Implant
3. Realization
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Pfeiffer, D.; Szeponik, J.; Gandhi, A. Biosensoren für Die Point-of-Care Diagnostik. In Technische Systeme für die Lebenswissenschaften; Institut für Bioprozess-und Analysenmesstechnik: Heiligenstadt, Germany, 2008; pp. 11–18. [Google Scholar]
- Carrara, S.; Cavallini, A.; Erokhin, V.; De Micheli, G. Multi-panel drugs detection in human serum for personalized therapy. Biosens. Bioelectron. 2011, 26, 3914–3919. [Google Scholar] [CrossRef] [PubMed]
- Perfezou, M.; Turner, A.; Merkoci, A. Cancer detection using nanoparticle-based sensors. Chem. Soc. Rev. 2012, 41, 2606–2622. [Google Scholar] [CrossRef] [PubMed]
- Poghossian, A.; Schöning, M.J. Label-free sensing of biomolecules with field-effect devices for clinical applications. Electroanalysis 2014, 26, 1197–1213. [Google Scholar] [CrossRef]
- Schumacher, S.; Nestler, J.; Otto, T.; Wegener, M.; Ehrentreich-Forster, E.; Michel, D.; Wunderlich, K.; Palzer, S.; Sohn, K.; Weber, A.; et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip 2012, 12, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Velugotla, S.; Pells, S.; Mjoseng, H.K.; Duffy, C.R.E.; Smith, S.; De Sousa, P.; Pethig, R. Dielectrophoresis based discrimination of human embryonic stem cells from differentiating derivatives. Biomicrofluidics 2012, 6, 044113. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yoav, H.; Dykstra, P.H.; Bentley, W.E.; Ghodssi, R. A microfluidic-based electrochemical biochip for label-free diffusion-restricted DNA hybridization analysis. Biosens. Bioelectron. 2012, 38, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Traeger, R. Nonhermeticity of polymeric lid sealants. IEEE Trans. Parts Hybrids Packag. 1977, 13, 147–152. [Google Scholar] [CrossRef]
- Abel, P.U.; von Woedtke, T. Biosensors for in vivo glucose measurement: Can we cross the experimental stage. Biosens. Bioelectron. 2002, 17, 1059–1070. [Google Scholar] [CrossRef]
- Koschwanez, H.E.; Reichert, W.M. In vitro, in vivo and post explantation testing of glucose-detecting biosensors: Current methods and recommendations. Biomaterials 2007, 28, 3687–3703. [Google Scholar] [CrossRef] [PubMed]
- Bundesministerium für Bildung und Forschung (BMBF). Aktionsplan Individualisierte Medizin; BMBF: Berlin, Germany, 2013. [Google Scholar]
- Lewis, S.; Russold, M.; Dietl, H.; Ruff, R.; Audi, J.M.C.; Hoffmann, K.P.; Abu-Saleh, L.; Schroeder, D.; Krautschneider, W.H.; Westendorff, S.; et al. Fully implantable multi-channel measurement system for acquisition of muscle activity. IEEE Trans. Instrum. Meas. 2013, 62, 1972–1981. [Google Scholar] [CrossRef]
- Glogener, P.; Krause, M.; Katzer, J.; Schubert, M.A.; Birkholz, M.; Bellmann, O.; Weber, C.; Hammon, H.; Metges, C.; Welsch, C.; et al. Prolonged corrosion stability of a microelectronic biosensor implant during in vivo exposure. 2016; submitted. [Google Scholar]
- Von Woedtke, T.; Jülich, W.D.; Hartmann, V.; Stieber, M.; Abel, P.U. Sterilization of enzyme glucose sensors: Problems and concepts. Biosens. Bioelectron. 2002, 17, 373–382. [Google Scholar] [CrossRef]
- Birkholz, M.; Ehwald, K.-E.; Basmer, T.; Reich, C.; Kulse, P.; Drews, J.; Genschow, D.; Haak, U.; Marschmeyer, S.; Matthus, E.; et al. Sensing glucose concentrations at GHz frequencies with a fully embedded BioMEMS. J. Appl. Phys. 2013, 113, 244904. [Google Scholar] [CrossRef] [PubMed]
- Hämmerle, H.; Kobuch, K.; Kohler, K.; Nisch, W.; Sachs, H.; Stelzle, M. Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 2002, 23, 797–804. [Google Scholar] [CrossRef]
- Birkholz, M.; Ehwald, K.-E.; Wolansky, D.; Costina, I.; Baristiran-Kaynak, C.; Fröhlich, M.; Beyer, H.; Kapp, A.; Lisdat, F. Corrosion-resistant metal layers from a CMOS process for bioelectronic applications. Surf. Coat. Technol. 2010, 204, 2055–2059. [Google Scholar] [CrossRef]
- Fröhlich, M.; Birkholz, M.; Ehwald, K.-E.; Kulse, P.; Fursenko, O.; Katzer, J. Biostability of an implantable glucose sensor chip. IOP Conf. Ser. Mater. Sci. Eng. 2012, 41, 012022. [Google Scholar] [CrossRef]
- Basmer, T.; Kulse, P.; Birkholz, M. Systemarchitektur intelligenter sensorimplantate. Biomed. Eng./Biomed. Tech. 2010, 55, 43–46. [Google Scholar]
- Basmer, T.; Genschow, D.; Fröhlich, M.; Birkholz, M. Energy budget of an implantable glucose measurement system. Biomed. Eng./Biomed. Tech. 2012, 57, 259–262. [Google Scholar] [CrossRef]
- European Telecommunications Standards Institute (ETSI). Electromagnetic compatibility and radio spectrum matters (ERM); short range devices (SRD); ultra low power active medical implants (ULP-AMI) and peripherals (ULP-AMI-P) operating in the frequency range 402 MHz to 405 MHz; part 1: Technical characteristics and test methods. In ETSI EN 301 839–1 V1.3.1 (2009–10); ETSI: Sophia Antipolis, France, 2010. [Google Scholar]
- Basmer, T.; Todtenberg, N.; Popiela, F.; Birkholz, M. Antennas for Medical Implant Applications Operating in the Mics Band. In Proceedings of the IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-Bio), Singapore, 9–11 December 2013.
- ZL70321—Implantable Radio Module MICS RF Telemetry. Available online: www.microsemi.com/products/ultra-low-power-wireless/implantable-medical-transceivers/zl70321 (accessed on 30 September 2016).
- Knoll, D.; Heinemann, B.; Barth, R.; Blum, K.; Borngräber, J.; Drews, J.; Ehwald, K.-E.; Fischer, G.; Fox, A.; Grabolla, T.; et al. A Modular, Low-Cost SiGe:C BiCMOS Process Featuring High-fT and High-BVceo transistors. In Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, Montreal, QC, Canada, 12–14 September 2004; pp. 241–244.
- Birkholz, M.; Ehwald, K.-E.; Kulse, P.; Drews, J.; Fröhlich, M.; Haak, U.; Kaynak, M.; Matthus, E.; Schulz, K.; Wolansky, D. Ultrathin TiN membranes as a technology platform for CMOS-integrated MEMS and BioMEMS devices. Adv. Funct. Mater. 2011, 21, 1652–1656. [Google Scholar] [CrossRef]
- Kulse, P.; Birkholz, M.; Ehwald, K.-E.; Bauer, J.; Drews, J.; Haak, U.; Höppner, W.; Katzer, J.; Schulz, K.; Wolansky, D. Fabrication of MEMS actuators from the BeOL of a 0.25 µm BiCMOS technology platform. Microelectr. Eng. 2012, 97, 276–279. [Google Scholar] [CrossRef]
- Birkholz, M.; Ehwald, K.-E.; Kaynak, M.; Semperowitsch, T.; Holz, B.; Nordhoff, S. Separation of extremely miniaturized medical sensors by IR laser dicing. J. Optoelectron. Adv. Mater. 2010, 12, 479–483. [Google Scholar]
- Birkholz, M.; Ehwald, K.-E.; Fröhlich, M.; Kulse, P.; Basmer, T.; Ehwald, R.; Guschauski, T.; Stoll, U.; Siegel, H.; Schmaderer, S.; et al. Minimal-Invasiver Blutzuckersensor. In Sensoren und Messsysteme 2012; GMA ITG VDI/VDE: Nürnberg, Germany, 2012; pp. 177–187. [Google Scholar]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birkholz, M.; Glogener, P.; Glös, F.; Basmer, T.; Theuer, L. Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant. Micromachines 2016, 7, 183. https://doi.org/10.3390/mi7100183
Birkholz M, Glogener P, Glös F, Basmer T, Theuer L. Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant. Micromachines. 2016; 7(10):183. https://doi.org/10.3390/mi7100183
Chicago/Turabian StyleBirkholz, Mario, Paul Glogener, Franziska Glös, Thomas Basmer, and Lorenz Theuer. 2016. "Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant" Micromachines 7, no. 10: 183. https://doi.org/10.3390/mi7100183
APA StyleBirkholz, M., Glogener, P., Glös, F., Basmer, T., & Theuer, L. (2016). Continuously Operating Biosensor and Its Integration into a Hermetically Sealed Medical Implant. Micromachines, 7(10), 183. https://doi.org/10.3390/mi7100183