Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources
Abstract
:1. Introduction
2. Structure and Models
2.1. Similarities and Differences between Solar Cells and Betavoltaic Batteries
2.2. Structure and Principle of the Multi-Source Energy Harvester
2.3. Equivalent Circuit Model and Formulas
3. Simulation and Optimization Design
3.1. Energy Deposition in the Si Semiconductor
3.2. Doping Concentration Optimization
3.3. Junction Depth Optimization
3.4. Passivation Layer Optimization
3.5. Simulation on Output Results
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tianjian, S.; Daihua, L.; Jianhua, C.; Zhimin, D.; Huihao, X.; Jianhua, W.; Sen, S.; Guojun, Y.; Xiao, W.; Dongxing, W.; et al. Radioisotope battery for particular application. Nucl. Tech. 2010, 33, 625–630. [Google Scholar]
- Sun, W.; Kherani, N.; Hirschman, K.; Gadeken, L.; Fauchet, P. A three-dimensional porous silcion p-n diode for betavoltics and photovotaics. Adv. Mater. 2005, 17, 1230–1233. [Google Scholar] [CrossRef]
- Kolawa, E.A.; Patel, J.U.; Fleurial, J.P. Very High Efficiency, Miniaturized, Long-lived alpha particle power source using diamond devices for extreme space environments. U.S. Patent 6,753,469, 22 June 2004. [Google Scholar]
- Eiting, C.J.; Krishnamoorthy, V.; Rodgers, S.; George, T.; Robertson, J.D.; Brockman, J. Demonstration of a radiation resistant, high efficiency SiC betavoltaic. Appl. Phys. Lett. 2006, 88, 4101. [Google Scholar] [CrossRef]
- Cheng, Z.; San, H.; Chen, X.; Liu, B.; Feng, Z. Demonstration of a high open-circuit voltage GaN betavoltaic microbattery. Chin. Phys. Lett. 2011, 28, 078401. [Google Scholar] [CrossRef]
- Guo, H.; Lal, A. Nano power beta voltaic micro batteries. In Proceedings of the 12th IEEE International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS’03), Boston, MA, USA, 8–12 June 2003; pp. 36–39.
- Blanchard, J.; Henderson, D.; Lal, A. A Nuclear Microbattery for MEMS Devices; US Deportment of Energy Award No. DEFG07-99ID13781; University of Wisconsin-Madison: Madison, WI, USA, 2002. [Google Scholar]
- Guo, H.; Yang, H.; Zhang, Y. Betavoltaic microbatteries using porous silicon. In Proceedings of the 20th IEEE International Conference on Micro Electro Mechanical Systems, Hyogo, Japan, 21–25 January 2007; pp. 867–870.
- San, H.; Yao, S.; Wang, X.; Cheng, Z.; Chen, X. Design and simulation of GaN based Schottky betavoltaic nuclear micro-battery. Appl. Radiat. Isot. 2013, 80, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Chen, D.; Xiong, Z.; Verlinden, P.J.; Dong, J.; Ye, F.; Li, H.; Zhu, H.; Zhong, M.; Yang, Y.; et al. 20.8% PERC solar cell on 156 mm × 156 mm P-type multicrystalline silicon substrate. IEEE J. Photovolt. 2015, 6, 1–7. [Google Scholar] [CrossRef]
- Masuko, K.; Shigematsu, M.; Hashiguchi, T.; Fujishima, D.; Kai, M.; Yoshimura, N.; Yamaguchi, T.; Ichihashi, Y.; Mishima, T.; Matsubara, N.; et al. Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 2014, 4, 1433–1435. [Google Scholar] [CrossRef]
- Kayes, B.M.; Nie, H.; Twist, R.; Spruytte, S.G.; Reinhardt, F.; Kizilyalli, I.C.; Higashi, G.S. 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination. In Proceedings of the 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 000004–000008.
- Li, H.; Zhang, G.; Ma, R.; You, Z. Design and Experimental Evaluation on an Advanced Multisource energy Harvesting System for Wireless Sensor Nodes. Sci. World J. 2014. Available online: https://www.hindawi.com/journals/tswj/2014/671280/ (accessed on 9 December 2016). [Google Scholar] [CrossRef] [PubMed]
- Kahn, J.M.; Katz, R.H.; Pister, K.S.J. Mobile networking for smart dust. In Proceedings of the 5th International Conference on the Mobile Computing and Networking, Seattle, WA, USA, 15–19 August 1999.
- Atwood, B.; Warneke, B.; Pister, K.S.J. Preliminary circuits for Smart Dust. In Proceedings of the 2000 Southwest Symposium on Mixed-Signal Design, San Diego, CA, USA, 27–29 February 2000; pp. 87–92.
- Lee, Y.; Kim, G.; Bang, S.; Kim, Y.; Lee, I.; Dutta, P.; Sylvester, D.; Blaauw, D. A modular 1 mm 3, die-stacked sensing platform with optical communication and multi-modal energy harvesting. In Proceedings of the 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA, USA, 19–22 February 2012; Volume 55, pp. 402–404.
- Lee, Y. Ultra-Low Power Circuit Design for Cubic-Millimeter Wireless Sensor Platform. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA, 2012. [Google Scholar]
- Honsberg, C.; Doolittle, W.A.; Allen, M.; Wang, C. GaN betavoltaic energy converters. In Proceedings of the Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference, Lake Buena Vista, FL, USA, 3–7 January 2005; pp. 102–105.
- Mohamadian, S.M.; Feghhi, S.A.H.; Afarideh, H. Analyze and simula-tion of a typical MEMS RPG using MCNP code. In Proceedings of the 16th International Conference on Nuclear Engineering, Orlando, FL, USA, 11–15 May 2008; pp. 883–886.
- Tang, X.B.; Ding, D.; Liu, Y.P.; Chen, D. Optimization design and analysis of Si–63Ni betavoltaic battery. Sci. China Technol. Sci. 2012, 55, 990–996. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Khan, S.I. Advances in surface passivation of C–Si solar cells. Mater. Renew. Sustain. Energy 2012, 1, 1–11. [Google Scholar] [CrossRef]
- Aberle, A.G. Surface passivation of crystalline silicon solar cells: A review. Prog. Photovolt. Res. Appl. 2000, 8, 473–487. [Google Scholar] [CrossRef]
Energy Source | Voc | Isc | η | Pm |
---|---|---|---|---|
Solar light (Front) | 697 mV | 37.7 mA | 20.8% | 20.8 mW |
147Pm source(Rear) | 384 mV | 1.51 μA | 5.05% | 0.46 μW |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Zhang, G.; You, Z. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources. Micromachines 2016, 7, 228. https://doi.org/10.3390/mi7120228
Li H, Zhang G, You Z. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources. Micromachines. 2016; 7(12):228. https://doi.org/10.3390/mi7120228
Chicago/Turabian StyleLi, Hao, Gaofei Zhang, and Zheng You. 2016. "Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources" Micromachines 7, no. 12: 228. https://doi.org/10.3390/mi7120228
APA StyleLi, H., Zhang, G., & You, Z. (2016). Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources. Micromachines, 7(12), 228. https://doi.org/10.3390/mi7120228