High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
3.1. Acceleration of Microdroplet under MPa-Order Pressure
3.2. Relationship between Droplet Acceleration and Applied Pressure
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Janasek, D.; Franzke, J.; Manz, A. Scaling and the design of miniaturized chemical-analysis systems. Nature 2006, 442, 374–380. [Google Scholar] [CrossRef] [PubMed]
- Mawatari, K.; Kazoe, Y.; Aota, A.; Tsukahara, T.; Sato, K.; Kitamori, T. Microflow systems for chemical synthesis and analysis: Approaches to full integration of chemical process. J. Flow Chem. 2011, 1, 3–12. [Google Scholar] [CrossRef]
- Tokeshi, M.; Minagawa, T.; Uchiyama, K.; Hibara, A.; Sato, K.; Hisamoto, H.; Kitamori, T. Continuous-flow chemical processing on a microchip by combining microunit operations and a multiphase flow network. Anal. Chem. 2002, 74, 1565–1571. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Wang, W.; He, F.; Chen, Z.-H.; Xie, R.; Ju, X.-J.; Liu, Z.; Chu, L.-Y. On-chip thermo-triggered coalescence of controllable Pickering emulsion droplet pairs. RSC Adv. 2016, 6, 64182–64192. [Google Scholar] [CrossRef]
- Song, H.; Tice, J.D.; Ismagilov, F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 2003, 47, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Mawatari, K.; Sugii, Y.; Hibara, A.; Kitamori, T. Development of a microdroplet collider; the liquid-liquid system utilizing the spatial-temporal localized energy. Microfluid. Nanofluid. 2010, 9, 945–953. [Google Scholar] [CrossRef]
- Chen, D.; Du, W.; Liu, Y.; Liu, W.; Kuznetsov, A.; Mendez, F.E.; Philipson, L.H.; Ismagilov, R.F. The chemistrode: A droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. PNAS 2008, 105, 16843–16868. [Google Scholar] [CrossRef] [PubMed]
- Abbott, C.E. A survey of waterdrop interaction experiments. Rev. Geophys. Space Phys. 1977, 15, 363–374. [Google Scholar] [CrossRef]
- Yamada, T.; Sakai, K. Observation of collision and oscillation ofmicrodroplets with extremely large shear deformation. Phys. Fluids 2012, 24, 022103. [Google Scholar] [CrossRef]
- Takahashi, K.; Sugii, Y.; Mawatari, K.; Kitamori, T. Experimental investigation of droplet acceleration and collision in the gas phase in a microchannel. Lab Chip 2011, 11, 3098–3105. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, R.; Mawatari, K.; Takahashi, K.; Kitamori, T. Development of a pressure-driven injection system for precisely time controlled attoliter sample injection into extended nanochannels. J. Chromatogr. A 2012, 1228, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Hibara, A.; Iwayama, S.; Matsuoka, S.; Ueno, M.; Kikutani, Y.; Tokeshi, M.; Kitamori, T. Surface modification method of microchannels for gas-liquid two-phase flow in microchips. Anal. Chem. 2005, 77, 943–947. [Google Scholar] [CrossRef] [PubMed]
- Takei, G.; Nonogi, M.; Hibara, A.; Kitamori, T.; Kim, H.-B. Tuning microchannel wettability and fabrication of multi-step Laplace valves. Lab Chip 2007, 7, 596–602. [Google Scholar] [CrossRef] [PubMed]
- Birdi, K.S.; Vu, D.T.; Winter, A. A study of the evaporation rates of small water drops placed on a solid surface. J. Phys. Chem. 1989, 93, 3702–3703. [Google Scholar] [CrossRef]
- Son, Y.; Kim, C.; Yang, D.H.; Ahn, D.J. Spreading of an inkjet droplet on a solid surface with a controlled contact angle at low Weber and Reynolds numbers. Langmuir 2008, 24, 2900–2907. [Google Scholar] [CrossRef] [PubMed]
- Shin, P.; Sung, J.; Lee, M.H. Control of droplet formation for low viscosity fluid by double waveforms applied to a piezoelectric inkjet nozzle. Microelectron. Reliab. 2011, 51, 797–804. [Google Scholar] [CrossRef]
- Günter, A.; Jhunjhunwala, M.; Thalmann, M.; Schmidt, M.A.; Jensen, K.F. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 2005, 21, 1547–1555. [Google Scholar] [CrossRef] [PubMed]
- Podgorski, T.; Flesselles, J.-M.; Limat, L. Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 2001, 87, 036102. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-Y.; Lee, H.J.; Kang, B.H. Sliding of liquid drops down an inclined solid surface. J. Colloid Interface Sci. 2002, 247, 372–380. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazoe, Y.; Yamashiro, I.; Mawatari, K.; Kitamori, T. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel. Micromachines 2016, 7, 142. https://doi.org/10.3390/mi7080142
Kazoe Y, Yamashiro I, Mawatari K, Kitamori T. High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel. Micromachines. 2016; 7(8):142. https://doi.org/10.3390/mi7080142
Chicago/Turabian StyleKazoe, Yutaka, Ippei Yamashiro, Kazuma Mawatari, and Takehiko Kitamori. 2016. "High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel" Micromachines 7, no. 8: 142. https://doi.org/10.3390/mi7080142
APA StyleKazoe, Y., Yamashiro, I., Mawatari, K., & Kitamori, T. (2016). High-Pressure Acceleration of Nanoliter Droplets in the Gas Phase in a Microchannel. Micromachines, 7(8), 142. https://doi.org/10.3390/mi7080142