Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Doubly-Clamped Resonators
2.2. Fabrication of Circular Drumhead Resonators
3. Results and Discussion
3.1. Fundamental Resonance Frequency at Room Temperature
3.2. Temperature Dependence of the Inverse of Quality Factors
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ekinci, K.L.; Huang, X.M.H.; Roukes, M.L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 2004, 84, 4469–4471. [Google Scholar] [CrossRef]
- Chen, C.; Rosenblatt, S.; Bolotin, K.I.; Kalb, W.; Kim, P.; Kymissis, I.; Stormer, H.L.; Heinz, T.F.; Hone, J. Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 2009, 4, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Van der Zande, A.M.; Barton, R.A.; Alden, J.S.; Ruiz-Vargas, C.S.; Whitney, W.S.; Pham, P.H.Q.; Park, J.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Large-scale arrays of single-layer graphene resonators. Nano Lett. 2010, 10, 4869–4873. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Sengupta, S.; Solanki, H.S.; Dhall, R.; Allain, A.; Dhara, S.; Pant, P.; Deshmukh, M.M. Probing thermal expansion of graphene and modal dispersion at low-temperature using graphene nanoelectromechanical systems resonators. Nanotechnology 2010, 21, 165204. [Google Scholar] [CrossRef] [PubMed]
- Naeli, K.; Brand, O. Dimensional considerations in achieving large quality factors for resonant silicon cantilevers in air. J. Appl. Phys. 2009, 105, 014908. [Google Scholar] [CrossRef]
- Kim, S.Y.; Park, H.S. The importance of edge effects on the intrinsic loss mechanisms of graphene nanoresonators. Nano Lett. 2009, 9, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.W.; Wang, J.S. Why edge effects are important on the intrinsic loss mechanisms of graphene nanoresonators. J. Appl. Phys. 2012, 111, 054314. [Google Scholar] [CrossRef]
- Bunch, J.S.; van der Zande, A.M.; Verbridge, S.S.; Frank, I.W.; Tanenbaum, D.M.; Parpia, J.M.; Craighead, H.G.; McEuen, P.L. Electromechanical resonators from graphene sheets. Science 2007, 315, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Sanchez, D.; van der Zande, A.M.; Paulo, A.S.; Lassagne, B.; McEuen, P.L.; Bachtold, A. Imaging mechanical vibrations in suspended graphene sheets. Nano Lett. 2008, 8, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Barton, R.A.; Ilic, B.; van der Zande, A.M.; Whitney, W.S.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G. High, size-dependent quality factor in an array of graphene mechanical resonators. Nano Lett. 2011, 11, 1232–1236. [Google Scholar] [CrossRef] [PubMed]
- Takamura, M.; Furukawa, K.; Okamoto, H.; Tanabe, S.; Yamaguchi, H.; Hibino, H. Epitaxial trilayer graphene mechanical resonators obtained by electrochemical etching combined with hydrogen intercalation. Jpn. J. Appl. Phys. 2013, 52, 04CH01. [Google Scholar] [CrossRef]
- Takamura, M.; Okamoto, H.; Furukawa, K.; Yamaguchi, H.; Hibino, H. Energy dissipation in edged and edgeless graphene mechanical resonators. J. Appl. Phys. 2014, 116, 064304. [Google Scholar] [CrossRef]
- Chen, C.; Hone, J. Graphene nanoelectromechanical systems. Proc. IEEE 2013, 101, 1766–1779. [Google Scholar] [CrossRef]
- Qi, Z.; Park, H. Intrinsic energy dissipation in CVD-grown graphene nanoresonators. Nanoscale 2012, 4, 3460–3465. [Google Scholar] [CrossRef] [PubMed]
- Shivaraman, S.; Barton, R.A.; Yu, X.; Alden, J.; Herman, L.; Chandrashekhar, M.; Park, J.; McEuen, P.L.; Parpia, J.M.; Craighead, H.G.; et al. Free-standing epitaxial graphene. Nano Lett. 2009, 9, 3100–3105. [Google Scholar] [CrossRef] [PubMed]
- Mattausch, A.; Pankratov, O. Ab initio study of graphene on SiC. Phys. Rev. Lett. 2007, 99, 076802. [Google Scholar] [CrossRef] [PubMed]
- Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A.A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804. [Google Scholar] [CrossRef] [PubMed]
- Hibino, H.; Kageshima, H.; Nagase, M. Epitaxial few-layer graphene: Towards single crystal growth. J. Phys. D 2010, 43, 374005. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.; Kitt, A.; Magnuson, C.; Hao, Y.; Ahmed, S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924. [Google Scholar] [CrossRef] [PubMed]
- Bunch, J.S.; Verbridge, S.S.; Alden, J.S.; van der Zande, A.M.; Parpia, J.M.; Craighead, H.G.; Mceuen, P.L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462. [Google Scholar] [CrossRef] [PubMed]
- Weaver, W.; Timoshenko, S.P.; Young, D.H. Vibration Problems in Engineering; Wiley: New York, NY, USA, 1990. [Google Scholar]
- Kelly, B.T. Physics of Graphite; Applied Science: London, UK, 1981. [Google Scholar]
- Zandiatashbar, A.; Lee, G.H.; An, S.J.; Lee, S.; Mathew, N.; Terrones, M.; Hayashi, T.; Picu, C.R.; Hone, J.; Koratkar, N. Effect of defects on the intrinsic strength and stiffness of graphene. Nat. Commun. 2014, 5, 3186. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Ahn, G.; Shim, J.; Lee, Y.S.; Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 2012, 3, 1024. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Vargas, C.S.; Zhuang, H.L.; Huang, P.Y.; van der Zande, A.M.; Garg, S.; McEuen, P.L.; Muller, D.A.; Hennig, R.G.; Park, J. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 2011, 11, 2259–2263. [Google Scholar] [CrossRef] [PubMed]
- Schneider, B.H.; Singh, V.; Venstra, W.J.; Meerwaldt, H.B.; Steele, G.A. Observation of decoherence in a carbon nanotube mechanical resonator. Nat. Commun. 2014, 5, 5819. [Google Scholar] [CrossRef] [PubMed]
- Zhan, H.F.; Zhang, Y.Y.; Bell, J.M.; Zhang, B.C.; Gu, Y.T. Tailoring the resonance of bilayer graphene sheets by interlayer sp3 bonds. J. Phys. Chem. C 2014, 118, 732–739. [Google Scholar] [CrossRef]
- Holland, M.G. Phonon scattering in semiconductors from thermal conductivity studies. Phys. Rev. 1964, 134, A471. [Google Scholar] [CrossRef]
- Jiang, J.W.; Wang, B.S.; Park, H.S.; Rabczuk, T. Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators. Nanotechnology 2014, 25, 025501. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Kato, K.; Nakai, Y.; Onomitsu, K.; Warisawa, S.; Ishihara, S. Improved resonance characteristics of GaAs beam resonators by epitaxially induced strain. Appl. Phys. Lett. 2008, 92, 251913. [Google Scholar] [CrossRef]
- Oshidari, Y.; Hatakeyama, T. High quality factor graphene resonator fabrication using resist shrinkage-induced strain. Appl. Phys. Express 2012, 5, 117201. [Google Scholar] [CrossRef]
- Imboden, M.; Mohanty, P. Dissipation in nanoelectromechanical systems. Phys. Rep. 2014, 534, 89–146. [Google Scholar] [CrossRef]
- Yan, Z.; Lin, J.; Peng, Z.; Sun, Z.; Zhu, Y.; Li, L. Toward the synthesis of wafer-scale single-crystal graphene on copper foils. ACS Nano 2012, 6, 9110–9117. [Google Scholar] [CrossRef] [PubMed]
- Ago, H.; Kawahara, K.; Ogawa, Y.; Tanoue, S.; Bissett, M.A.; Tsuji, M.; Sakaguchi, H.; Koch, R.J.; Fromm, F.; Seyller, T.; et al. Epitaxial growth and electronic properties of large hexagonal graphene domains on Cu(111) thin film. Appl. Phys. Express 2013, 6, 075101. [Google Scholar] [CrossRef]
- Mohsin, A.; Liu, L.; Liu, P.; Deng, W.; Ivanov, I.N.; Li, G.; Dyck, O.E.; Duscher, G.; Dunlap, J.R.; Xiao, K.; et al. Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. ACS Nano 2013, 7, 8924–8931. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Chen, W.; Han, C.; Wang, G.; Tang, B.; Tang, C.; Wang, Y.; Zou, W.; Zhang, X.A.; Qin, S.; et al. Growth of millimeter-size single crystal graphene on Cu foils by circumfluence chemical vapor deposition. Sci. Rep. 2014, 4, 4537. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Hibino, H.; Suzuki, S.; Yamamoto, H. Atmospheric pressure chemical vapor deposition growth of millimeter-scale single-crystalline graphene on the copper surface with a native oxide layer. Chem. Mater. 2016, 28, 4893–4900. [Google Scholar] [CrossRef]
- Waldmann, D.; Butz, B.; Bauer, S.; Englert, J.M.; Jobst, J.; Ullmann, K.; Fromm, F.; Ammon, M.; Enzelberger, M.; Hirsch, A.; et al. Robust graphene membranes in a silicon carbide frame. ACS Nano 2013, 7, 4441–4418. [Google Scholar] [CrossRef] [PubMed]
- Hüttel, A.K.; Steele, G.A.; Witkamp, B.; Poot, M.; Kouwenhoven, L.P.; van der Zant, H.S.J. Carbon nanotubes as ultrahigh quality factor mechanical resonators. Nano Lett. 2009, 9, 2547–2552. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yu, M.F.; Liu, B.; Huang, Y. Intrinsic rnergy loss mechanisms in a cantilevered carbon nanotube beam oscillator. Phys. Rev. Lett. 2004, 93, 185501. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Park, H.S. Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators. Appl. Phys. Lett. 2009, 94, 101918. [Google Scholar] [CrossRef]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takamura, M.; Okamoto, H.; Furukawa, K.; Yamaguchi, H.; Hibino, H. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges. Micromachines 2016, 7, 158. https://doi.org/10.3390/mi7090158
Takamura M, Okamoto H, Furukawa K, Yamaguchi H, Hibino H. Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges. Micromachines. 2016; 7(9):158. https://doi.org/10.3390/mi7090158
Chicago/Turabian StyleTakamura, Makoto, Hajime Okamoto, Kazuaki Furukawa, Hiroshi Yamaguchi, and Hiroki Hibino. 2016. "Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges" Micromachines 7, no. 9: 158. https://doi.org/10.3390/mi7090158
APA StyleTakamura, M., Okamoto, H., Furukawa, K., Yamaguchi, H., & Hibino, H. (2016). Energy Dissipation in Graphene Mechanical Resonators with and without Free Edges. Micromachines, 7(9), 158. https://doi.org/10.3390/mi7090158