A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Device Fabrication
2.4. Molecular Surface Self-Assembly of Polyelectrolytes (PETs)
3. Results and Discussion
3.1. Characterization of FBAR
3.2. Morphology Optimization of Nano-Assembled PET Thin Films
3.3. Humidity Sensing Characteristics
3.3.1. Sensitivity and Linearity
3.3.2. Reversibility
3.3.3. Detection Limit, Noise and Stability
3.4. Temperature Dependence
3.5. Selectivity Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Roy, J.; Boulard, T.; Kittas, C.; Wang, S. Pa—Precision agriculture: Convective and ventilation transfers in greenhouses, part 1: The greenhouse considered as a perfectly stirred tank. Biosyst. Eng. 2002, 83, 1–20. [Google Scholar] [CrossRef]
- Late, D.J.; Liu, B.; Matte, H.R.; Dravid, V.P.; Rao, C. Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 2012, 6, 5635–5641. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 2005, 102, 10451–10453. [Google Scholar] [CrossRef] [PubMed]
- Borini, S.; White, R.; Wei, D.; Astley, M.; Haque, S.; Spigone, E.; Harris, N.; Kivioja, J.; Ryhanen, T. Ultrafast graphene oxide humidity sensors. ACS Nano 2013, 7, 11166–11173. [Google Scholar] [CrossRef] [PubMed]
- Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M.S. Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 2013, 3, 2714. [Google Scholar] [CrossRef] [PubMed]
- Xuan, W.; He, X.; Chen, J.; Wang, W.; Wang, X.; Xu, Y.; Xu, Z.; Fu, Y.Q.; Luo, J. High sensitivity flexible lamb-wave humidity sensors with a graphene oxide sensing layer. Nanoscale 2015, 7, 7430–7436. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ding, B.; Yu, J.; Wang, M.; Pan, F. A highly sensitive humidity sensor based on a nanofibrous membrane coated quartz crystal microbalance. Nanotechnology 2009, 21, 055502. [Google Scholar] [CrossRef] [PubMed]
- Kuang, Q.; Lao, C.; Wang, Z.L.; Xie, Z.; Zheng, L. High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 2007, 129, 6070–6071. [Google Scholar] [CrossRef] [PubMed]
- Tellis, J.C.; Strulson, C.A.; Myers, M.M.; Kneas, K.A. Relative humidity sensors based on an environment-sensitive fluorophore in hydrogel films. Anal. Chem. 2010, 83, 928–932. [Google Scholar] [CrossRef] [PubMed]
- Hautefeuille, M.; O’Flynn, B.; Peters, F.H.; O’Mahony, C. Development of a microelectromechanical system (MEMS)-based multisensor platform for environmental monitoring. Micromachines 2011, 2, 410–430. [Google Scholar] [CrossRef]
- Qiu, X.; Tang, R.; Zhu, J.; Oiler, J.; Yu, C.; Wang, Z.; Yu, H. Experiment and theoretical analysis of relative humidity sensor based on film bulk acoustic-wave resonator. Sens. Actuators B 2010, 147, 381–384. [Google Scholar] [CrossRef]
- Ashley, G.; Kirby, P.; Butler, T.; Whatmore, R.; Luo, J. Chemically sensitized thin-film bulk acoustic wave resonators as humidity sensors. J. Electrochem. Soc. 2010, 157, J419–J424. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, J.; Cui, W.; Pang, W.; Zhang, H.; Zhang, D.; Duan, X. Kinetic studies of microfabricated biosensors using local adsorption strategy. Biosens. Bioelectron. 2015, 74, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, H.; Zhao, H.; Tang, Z.; Wang, Y.; Sun, C.; Pang, W.; Duan, X. Comparative analysis of static and non-static assays for biochemical sensing using on-chip integrated field effect transistors and solidly mounted resonators. Sens. Actuators B 2016, 243, 775–783. [Google Scholar] [CrossRef]
- Gabl, R.; Green, E.; Schreiter, M.; Feucht, H.; Zeininger, H.; Primig, R.; Pitzer, D.; Eckstein, G.; Wersing, W. Novel integrated FBAR sensors: A universal technology platform for bio-and gas-detection. Proc. IEEE Sens. 2003, 2, 1184–1188. [Google Scholar]
- Wu, T.-T.; Chen, Y.-Y.; Chou, T.-H. A high sensitivity nanomaterial based SAW humidity sensor. J. Phys. D 2008, 41, 085101. [Google Scholar] [CrossRef]
- Fu, X.; Wang, C.; Yu, H.; Wang, Y.; Wang, T. Fast humidity sensors based on CeO2 nanowires. Nanotechnology 2007, 18, 145503. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, L.; Wu, F.; Yuan, S.; Zhao, Y.; Zhang, M. The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 2011, 22, 275502. [Google Scholar] [CrossRef] [PubMed]
- Yeow, J.; She, J. Carbon nanotube-enhanced capillary condensation for a capacitive humidity sensor. Nanotechnology 2006, 17, 5441–5448. [Google Scholar] [CrossRef]
- Xu, H.; Gomez-Casado, A.; Liu, Z.; Reinhoudt, D.N.; Lammertink, R.G.; Huskens, J. Porous multilayer-coated PDMS stamps for protein printing. Langmuir 2009, 25, 13972–13977. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.J.; Björnmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348, aaa2491. [Google Scholar] [CrossRef] [PubMed]
- Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 1997, 277, 1232–1237. [Google Scholar] [CrossRef]
- Liu, W.; Wang, J.; Yu, Y.; Chang, Y.; Tang, N.; Qu, H.; Wang, Y.; Pang, W.; Zhang, H.; Zhang, D. Tuning the resonant frequency of resonators using molecular surface self-assembly approach. ACS Appl. Mater. Interfaces 2014, 7, 950–958. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, K. RF Bulk Acoustic Wave Filters for Communications; Artech House: St Norwood, MA, USA, 2009; p. 92. [Google Scholar]
- Lu, Y.; Chang, Y.; Tang, N.; Qu, H.; Liu, J.; Pang, W.; Zhang, H.; Zhang, D.; Duan, X. Detection of volatile organic compounds using microfabricated resonator array functionalized with supramolecular monolayers. ACS Appl. Mater. Interfaces 2015, 7, 17893–17903. [Google Scholar] [CrossRef] [PubMed]
- Klitzing, R.V. Internal structure of polyelectrolyte multilayer assemblies. Phys. Chem. Chem. Phys. 2006, 8, 5012–5033. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Fu, Y.; Wang, Z.; Fan, Y.; Zhang, X. Investigation into an alternating multilayer film of poly (4-vinylpyridine) and poly (acrylic acid) based on hydrogen bonding. Langmuir 1999, 15, 1360–1363. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Cho, J.; Char, K.; Hong, J.D.; Lee, K.B. Fabrication of highly ordered multilayer films using a spin self-assembly method. Adv. Mater. 2001, 13, 1076–1078. [Google Scholar] [CrossRef]
- Su, P.-G.; Cheng, K.-H. Layer-by-layer assembly of mica and polyelectrolyte for use in low-humidity sensor. Sens. Actuators B 2009, 137, 555–560. [Google Scholar] [CrossRef]
- Su, P.-G.; Cheng, K.-H. Self-assembly of polyelectrolytic multilayer thin films of polyelectrolytes on quartz crystal microbalance for detecting low humidity. Sens. Actuators B 2009, 142, 123–129. [Google Scholar] [CrossRef]
- Penza, M.; Cassano, G. Relative humidity sensing by PVA-coated dual resonator SAW oscillator. Sens. Actuators B 2000, 68, 300–306. [Google Scholar] [CrossRef]
- Shen, Y.; Zhou, J.; Liu, T.; Tao, Y.; Jiang, R.; Liu, M.; Xiao, G.; Zhu, J.; Zhou, Z.-K.; Wang, X. Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit. Nat. Commun. 2013, 4, 2381. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-Y.; Lee, G.-B. Micromachine-based humidity sensors with integrated temperature sensors for signal drift compensation. J. Micromech. Microeng. 2003, 13, 620–627. [Google Scholar] [CrossRef]
- Jing, Z.; Zhan, J. Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 2008, 20, 4547–4551. [Google Scholar] [CrossRef]
- Chang, J.; Kuo, H.; Leu, I.; Hon, M. The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuators B 2002, 84, 258–264. [Google Scholar] [CrossRef]
- Salager, J.-L.; Marquez, N.; Graciaa, A.; Lachaise, J. Partitioning of ethoxylated octylphenol surfactants in microemulsion-oil-water systems: Influence of temperature and relation between partitioning coefficient and physicochemical formulation. Langmuir 2000, 16, 5534–5539. [Google Scholar] [CrossRef]
- Grate, J.W. Hydrogen-bond acidic polymers for chemical vapor sensing. Chem. Rev. 2008, 108, 726–745. [Google Scholar] [CrossRef] [PubMed]
- Kolmakov, A.; Klenov, D.; Lilach, Y.; Stemmer, S.; Moskovits, M. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles. Nano Lett. 2005, 5, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Sanger, M.J.; Badger, S.M., II. Using computer-based visualization strategies to improve students’ understanding of molecular polarity and miscibility. J. Chem. Educ. 2001, 78, 1412–1416. [Google Scholar] [CrossRef]
- Chen, H.-W.; Wu, R.-J.; Chan, K.-H.; Sun, Y.-L.; Su, P.-G. The application of CNT/Nafion composite material to low humidity sensing measurement. Sens. Actuators B 2005, 104, 80–84. [Google Scholar] [CrossRef]
Sample | Assembly Methods | PET Concentration |
---|---|---|
1 | Dipping-assisted | 0.2 mg/mL |
2 | Dipping-assisted | 20 mg/mL |
3 | Spinning-assisted | 20 mg/mL |
Number of Bilayers | Sensitivity (Hz/ppm) | R-Square |
---|---|---|
5 | 143.61 | 0.97625 |
10 | 345.91 | 0.99695 |
15 | 500.53 | 0.99576 |
20 | 886.11 | 0.99892 |
25 | 1317.20 | 0.98583 |
30 | 2202.20 | 0.98989 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Qu, H.; Hu, J.; Pang, W.; Zhang, H.; Duan, X. A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films. Micromachines 2017, 8, 116. https://doi.org/10.3390/mi8040116
Liu W, Qu H, Hu J, Pang W, Zhang H, Duan X. A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films. Micromachines. 2017; 8(4):116. https://doi.org/10.3390/mi8040116
Chicago/Turabian StyleLiu, Wenpeng, Hemi Qu, Jizhou Hu, Wei Pang, Hao Zhang, and Xuexin Duan. 2017. "A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films" Micromachines 8, no. 4: 116. https://doi.org/10.3390/mi8040116
APA StyleLiu, W., Qu, H., Hu, J., Pang, W., Zhang, H., & Duan, X. (2017). A Highly Sensitive Humidity Sensor Based on Ultrahigh-Frequency Microelectromechanical Resonator Coated with Nano-Assembled Polyelectrolyte Thin Films. Micromachines, 8(4), 116. https://doi.org/10.3390/mi8040116