High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance
Abstract
:1. Introduction
2. Structural and Theoretical Modeling
3. Simulation Results and Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nguyen, H.; Park, J.; Kang, S.; Kim, M. Surface plasmon resonance: A versatile technique for biosensor applications. Sensors 2015, 15, 10481–10510. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.R.; Akter, S.; Rifat, A.A.; Rana, S.; Ali, S. A Highly Sensitive Gold-Coated Photonic Crystal Fiber Biosensor Based on Surface Plasmon Resonance. Photonics 2017, 4, 18. [Google Scholar] [CrossRef]
- Wang, F.; Sun, Z.; Liu, C.; Sun, T.; Chu, P.K. A Highly Sensitive Dual-Core Photonic Crystal Fiber Based on a Surface Plasmon Resonance Biosensor with Silver-Graphene Layer. Plasmonics 2016, 12, 1847–1853. [Google Scholar] [CrossRef]
- Zanishevskaja, A.A.; Tuchin, V.V.; Skibina, Y.S. Photonic crystal fibers for food quality analysis. In Proceedings of the Biophotonics: Photonic Solutions for Better Health Care III, Brussels, Belgium, 16–19 April 2012; SPIE: Bellingham, WA, USA, 2012; Volume 8427, p. 87. [Google Scholar]
- Cubillas, A.; Schmidt, M.; Scharrer, M.; Euser, T.G.; Etzold, B.; Taccardi, N.; Wasserscheid, P.; Russell, P.S.J. Monitoring of Catalytic Reactions in Photonic Crystal Fiber. In Proceedings of the 2011 Conference on Lasers and Electro-Optics Europe, Munich, Germany, 22–26 May 2011. [Google Scholar]
- Mohammadi, R.; Pourmahyabadi, M. Design and Analysis of Photonic Crystal Fiber Gas Sensor with High Relative Sensitivity. Available online: http://opsi.ir/browse.php?a_id=869&sid=1&slc_lang=en (accessed on 3 December 2018).
- Dash, J.N.; Jha, R. Graphene based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol. Lett. 2014, 26, 1092–1095. [Google Scholar] [CrossRef]
- Saitoh, K.; Koshiba, M. Numerical modeling of photonic crystal fibers. J. Lightw. Technol. 2005, 23, 3580–3590. [Google Scholar] [CrossRef] [Green Version]
- Yoav, S.; Dror, M.; Zeev, Z. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers. Opt. Lett. 2014, 39, 4655–4658. [Google Scholar]
- Dadabayev, R.; Shabairou, N.; Zalevsky, Z.; Malka, D. A visible light RGB wavelength demultiplexer based on silicon-nitride multicore PCF. Opt. Laser Technol. 2019, 111, 411–416. [Google Scholar] [CrossRef]
- Malka, D.; Katz, G. An Eight-Channel C-Band Demux Based on Multicore Photonic Crystal Fiber. Nanomaterials 2018, 8, 845. [Google Scholar] [CrossRef] [PubMed]
- Hautakorpi, M.; Mattinen, M.; Ludvigsen, H. Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber. Opt. Express 2008, 16, 8427–8432. [Google Scholar] [CrossRef] [PubMed]
- Rifat, A.; Mahdiraji, G.; Chow, D.; Shee, Y.; Ahmed, R.; Adikan, F. Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 2015, 15, 11499–11510. [Google Scholar] [CrossRef]
- Dash, J.N.; Jha, R. SPR Biosensor Based on Polymer PCF Coated with Conducting Metal Oxide. IEEE Photonics Technol. Lett. 2014, 26, 595–598. [Google Scholar] [CrossRef]
- Liu, B.; Lu, Y.; Yang, X.; Yao, J. Surface plasmon resonance sensor based on photonic crystal fiber filled with core-shell Ag-Au nanocomposite materials. Opt. Eng. 2016, 55, 117104. [Google Scholar] [CrossRef]
- Zhou, C. Theoretical analysis of double-microfluidic-channels photonic crystal fiber sensor based on silver nanowires. Opt. Commun. 2013, 288, 42–46. [Google Scholar] [CrossRef]
- Liu, B.; Lu, Y.; Yang, X.; Yao, J. Tunable Surface Plasmon Resonance Sensor Based on Photonic Crystal Fiber Filled with Gold Nanoshells. Plasmonics 2018, 13, 763–770. [Google Scholar] [CrossRef]
- Malitson, I. Interspecimen comparison of the refractive index of fused silica. JOSA 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Lu, X.; Liu, Q.; Wang, F.; Lv, J.; Sun, T.; Mu, H.; Chu, P. Mid-infrared surface plasmon resonance sensor based on photonic crystal fibers. Opt. Express 2017, 25, 14227–14237. [Google Scholar] [CrossRef] [PubMed]
- Rifat, A.A.; Mahdiraji, G.A.; Sua, Y.M.; Ahmed, R.; Shee, Y.G.; Adikan, F.M. Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Express 2016, 24, 2485–2495. [Google Scholar] [CrossRef]
- Yang, X.; Lu, Y.; Liu, B.; Yao, J. Analysis of Graphene-Based Photonic Crystal Fiber Sensor Using Birefringence and Surface Plasmon Resonance. Plasmonics 2016, 12, 489–496. [Google Scholar] [CrossRef]
- Momota, M.R.; Hasan, M.R. Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 2018, 76, 287–294. [Google Scholar] [CrossRef]
- Rifat, A.A.; Mahdiraji, G.A.; Sua, Y.M.; Shee, Y.G.; Ahmed, R.; Chow, D.M.; Adikan, F.M. Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach. IEEE Photonics Technol. Lett. 2015, 27, 1628–1631. [Google Scholar] [CrossRef]
- Chakma, S.; Khalek, M.A.; Paul, B.K.; Ahmed, K.; Hasan, M.R.; Bahar, A.N. Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis. Sens. Bio-Sens. Res. 2018, 18, 7–12. [Google Scholar] [CrossRef]
The Structure of PCF | Detection RI Range | Maximum Sensitivity |
---|---|---|
Double core structure [2] | 1.35–1.36 | 2200 nm/RIU |
Graphene-Based structure [21] | 1.345–1.350 | 3400 nm/RIU |
Hollow-core silver coated structure [22] | 1.36–1.37 | 4200 nm/RIU |
Double core structure [23] | 1.33–1.34 | 4000 nm/RIU |
Double core structure [24] | 1.36–1.37 | 9000 nm/RIU |
Structure with Gold Coated Externally (our work) | 1.390–1.395 | 11,000 nm/RIU |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Li, S.; Yan, X.; Sun, D.; Liu, Z.; Cheng, T. High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance. Micromachines 2018, 9, 640. https://doi.org/10.3390/mi9120640
Li X, Li S, Yan X, Sun D, Liu Z, Cheng T. High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance. Micromachines. 2018; 9(12):640. https://doi.org/10.3390/mi9120640
Chicago/Turabian StyleLi, Xudong, Shuguang Li, Xin Yan, Dongming Sun, Zheng Liu, and Tonglei Cheng. 2018. "High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance" Micromachines 9, no. 12: 640. https://doi.org/10.3390/mi9120640
APA StyleLi, X., Li, S., Yan, X., Sun, D., Liu, Z., & Cheng, T. (2018). High Sensitivity Photonic Crystal Fiber Refractive Index Sensor with Gold Coated Externally Based on Surface Plasmon Resonance. Micromachines, 9(12), 640. https://doi.org/10.3390/mi9120640