The Effect of Encapsulation Geometry on the Performance of Stretchable Interconnects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication
2.3. FE Analysis
3. Characterization Methods
4. Results
4.1. FE Analysis
4.2. The Peel Test
4.3. The Tensile Test
4.4. The Cyclic Test
5. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
References
- Yokus, M.A.; Foote, R.; Jur, J.S. Printed stretchable interconnects for smart garments: design, fabrication, and characterization. IEEE Sens. J. 2016, 16, 7967–7976. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and soft electronics using liquid metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef]
- Yu, X.; Mahajan, B.; Shou, W.; Pan, H. Materials, mechanics, and patterning techniques for elastomer-based stretchable conductors. Micromachines 2016, 8, 7. [Google Scholar] [CrossRef]
- Do, T.N.; Visell, Y. Stretchable, twisted conductive microtubules for wearable computing, robotics, electronics, and healthcare. Sci. Rep. 2017, 7, 1753. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.H.; Kim, D.C.; Shim, H.J.; Kim, T.-H.; Kim, D.-H. Flexible and stretchable smart display: materials, fabrication, device design, and system integration. Adv. Funct. Mater. 2018, 28, 1801834. [Google Scholar] [CrossRef]
- Liu, Y.; Pharr, M.; Salvatore, G.A. Lab-on-Skin: A review of flexible and stretchable electronics for wearable health monitoring. ACS Nano 2017, 11, 9614–9635. [Google Scholar] [CrossRef] [PubMed]
- Cataldi, P.; Athanassiou, A.; Bayer, I. Graphene nanoplatelets-based advanced materials and recent progress in sustainable applications. Appl. Sci. 2018, 8, 1438. [Google Scholar] [CrossRef]
- Li, R.; Li, M.; Su, Y.; Song, J.; Ni, X. An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter 2013, 9, 8476–8482. [Google Scholar] [CrossRef]
- Suikkola, J.; Björninen, T.; Mosallaei, M.; Kankkunen, T.; Iso-Ketola, P.; Ukkonen, L.; Vanhala, J.; Mäntysalo, M. Screen-printing fabrication and characterization of stretchable electronics. Sci. Rep. 2016, 6, 25784. [Google Scholar] [CrossRef] [PubMed]
- Van den Brand, J.; de Kok, M.; Koetse, M.; Cauwe, M.; Verplancke, R.; Bossuyt, F.; Jablonski, M.; Vanfleteren, J. Flexible and stretchable electronics for wearable health devices. Solid State Electron. 2015, 113, 116–120. [Google Scholar] [CrossRef]
- Zamarayeva, A.M.; Ostfeld, A.E.; Wang, M.; Duey, J.K.; Deckman, I.; Lechêne, B.P.; Davies, G.; Steingart, D.A.; Arias, A.C. Flexible and stretchable power sources for wearable electronics. Sci. Adv. 2017, 3. [Google Scholar] [CrossRef] [PubMed]
- Mosallaei, M.; Jokinen, J.; Honkanen, M.; Iso-Ketola, P.; Vippola, M.; Vanhala, J.; Kanerva, M.; Mantysalo, M. Geometry analysis in screen-printed stretchable interconnects. IEEE Trans. Compon. Packag. Manuf. Technol. 2018, 8, 1344–1352. [Google Scholar] [CrossRef]
- Mosallaei, M.; Khorramdel, B.; Honkanen, M.; Iso-Ketola, P.; Vanhala, J.; Mantysalo, M. Fabrication and characterization of screen printed stretchable carbon interconnects. In Proceedings of the 2017 IMAPS Nordic Conference on Microelectronics Packaging (NordPac), Gothenburg, Sweden, 18–20 June 2017; pp. 78–83. [Google Scholar]
- Wang, Y.; Li, Z.; Xiao, J. Stretchable thin film materials: fabrication, application, and mechanics. J. Electron. Packag. 2016, 138, 020801. [Google Scholar] [CrossRef]
- Cataldi, P.; Dussoni, S.; Ceseracciu, L.; Maggiali, M.; Natale, L.; Metta, G.; Athanassiou, A.; Bayer, I.S. Carbon nanofiber versus graphene-based stretchable capacitive touch sensors for artificial electronic skin. Adv. Sci. 2018, 5, 1700587. [Google Scholar] [CrossRef] [PubMed]
- Harris, K.D.; Elias, A.L.; Chung, H.-J. Flexible electronics under strain: A review of mechanical characterization and durability enhancement strategies. J. Mater. Sci. 2016, 51, 2771–2805. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, X. Mechanisms and materials of flexible and stretchable skin sensors. Micromachines 2017, 8, 69. [Google Scholar] [CrossRef]
- Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T.M.; Mäntysalo, M. Inkjet-printed graphene/PEDOT:PSS temperature sensors on a skin-conformable polyurethane substrate. Sci. Rep. 2016, 6, 35289. [Google Scholar] [CrossRef]
- Park, M.; Park, J.; Jeong, U. Design of conductive composite elastomers for stretchable electronics. Nano Today 2014, 9, 244–260. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, H.; Su, Y.; Xu, S.; Cheng, H.; Fan, J.A.; Hwang, K.C.; Rogers, J.A.; Huang, Y. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 2013, 61, 7816–7827. [Google Scholar] [CrossRef]
- Cheng, T.; Zhang, Y.; Lai, W.-Y.; Huang, W. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 2015, 27, 3349–3376. [Google Scholar] [CrossRef]
- Gonzalez, M.; Axisa, F.; Bulcke, M.V.; Brosteaux, D.; Vandevelde, B.; Vanfleteren, J. Design of metal interconnects for stretchable electronic circuits. Microelectron. Reliab. 2008, 48, 825–832. [Google Scholar] [CrossRef]
- Someya, T. (Ed.) Stretchable Electronics; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Dang, W.; Vinciguerra, V.; Lorenzelli, L.; Dahiya, R. Printable stretchable interconnects. Flex. Print. Electron. 2017, 2, 013003. [Google Scholar] [CrossRef] [Green Version]
- Khondoker, M.A.H.; Sameoto, D. Fabrication methods and applications of microstructured gallium based liquid metal alloys. Smart Mater. Struct. 2016, 25, 093001. [Google Scholar] [CrossRef]
- Varner, H.; Mahaffey, J.; Marinis, T.; DiBiasio, C. Encapsulation of microelectronic assemblies for use in harsh environments. Int. Symp. Microelectron. 2017, 2017, 000292–000299. [Google Scholar] [CrossRef]
Y (mm) | X (mm) | Z (mm) | Failure Strain (%) |
---|---|---|---|
15 | 1 | 5 | 55.3 |
20 | 1 | 5 | 58.1 |
25 | 1 | 5 | 56.2 |
30 | 1 | 5 | 54.1 |
15 | 1 | 7 | 50.5 |
20 | 1 | 7 | 53.1 |
25 | 1 | 7 | 52.1 |
30 | 1 | 7 | 50.9 |
15 | 2 | 5 | 51.8 |
20 | 2 | 5 | 59.2 |
25 | 2 | 5 | 59.8 1 |
30 | 2 | 5 | 56.6 |
15 | 2 | 7 | 51.0 |
20 | 2 | 7 | 54.6 |
25 | 2 | 7 | 54.0 |
30 | 2 | 7 | 52.3 |
15 | 3 | 5 | 54.0 |
20 | 3 | 5 | 51.2 |
30 | 3 | 5 | 59.2 |
15 | 3 | 7 | 53.0 |
20 | 3 | 7 | 56.3 |
25 | 3 | 7 | 56.1 |
30 | 3 | 7 | 54.4 |
Sample Set | Description | Geometry |
---|---|---|
Set 1 | Non-encapsulated sample | Figure 3A |
Set 2 | DI-7540 partially encapsulated | Figure 3C (X: 2 mm; Y: 25 mm; Z: 5 mm) |
Set 3 | DI-7540 entirely encapsulated | Figure 3B |
Set 4 | TPU partially encapsulated | Figure 3C (X: 2 mm; Y: 25 mm; Z: 5 mm) |
Set 5 | TPU entirely encapsulated | Figure 3B |
Stretch % | Set 1 | Set 2 | Set 3 | Set 4 | Set 5 |
---|---|---|---|---|---|
10 | 1915 | 322 | 286 | 10K | 10K |
20 | 1322 | 181 | 109 | 10K | 6983 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosallaei, M.; Jokinen, J.; Kanerva, M.; Mäntysalo, M. The Effect of Encapsulation Geometry on the Performance of Stretchable Interconnects. Micromachines 2018, 9, 645. https://doi.org/10.3390/mi9120645
Mosallaei M, Jokinen J, Kanerva M, Mäntysalo M. The Effect of Encapsulation Geometry on the Performance of Stretchable Interconnects. Micromachines. 2018; 9(12):645. https://doi.org/10.3390/mi9120645
Chicago/Turabian StyleMosallaei, Mahmoud, Jarno Jokinen, Mikko Kanerva, and Matti Mäntysalo. 2018. "The Effect of Encapsulation Geometry on the Performance of Stretchable Interconnects" Micromachines 9, no. 12: 645. https://doi.org/10.3390/mi9120645
APA StyleMosallaei, M., Jokinen, J., Kanerva, M., & Mäntysalo, M. (2018). The Effect of Encapsulation Geometry on the Performance of Stretchable Interconnects. Micromachines, 9(12), 645. https://doi.org/10.3390/mi9120645