Capillary Rise of Nanostructured Microwicks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Deposition of Flower Like ZnO Nanostructure on the Microwick Structure
2.2. Capillary Rise Measurement—Height Measurement Approach and Mass Gain Approach
3. Results and Discussion
3.1. Deposition of the Flower Like ZnO Nanostructure on the Microwick Structure
3.2. Capillary Rise Experiments of the Coated Wick Structure
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Nomenclature
σlv [N/m] | Surface tension | R [µm] | Pore radius |
cos ϴ | static contact angle | K [m2] | Permeability |
ρ [kg/m3] | density | ϕ | Porosity |
g [m/s2] | gravity | me [kg/m2s] | Mass flow rate by evaporation |
µ [NS/m2] | dynamic viscosity | d [m] | film thickness |
h [m] | location of meniscus | t [s] | time |
References
- Hammond, V.; Loos, A. The effects of fluid type and viscosity on the steady-state and advancing front permeability behavior of textile preforms. J. Reinf. Plast. Compos. 1997, 16, 50–72. [Google Scholar] [CrossRef]
- Hendriks, C.E.; Smith, P.J.; Perelaer, J.; Van den Berg, A.M.; Schubert, U.S. “Invisible” silver tracks produced by combining hot-embossing and inkjet printing. Adv. Funct. Mater. 2008, 18, 1031–1038. [Google Scholar] [CrossRef]
- Jamaloei, B.Y.; Kharrat, R.; Asghari, K.; Torabi, F. The influence of pore wettability on the microstructure of residual oil in surfactant-enhanced water flooding in heavy oil reservoirs: Implications for pore-scale flow characterization. J. Pet. Sci. Eng. 2011, 77, 121–134. [Google Scholar] [CrossRef]
- Ohigashi, R.; Tsuchiya, K.; Mita, Y.; Fujita, H. Electric ejection of viscous inks from mems capillary array head for direct drawing of fine patterns. J. Microelectromech. Syst. 2008, 17, 272–277. [Google Scholar] [CrossRef]
- Culligan, K.; Wildenschild, D.; Christensen, B.S.B.; Gray, W.; Rivers, M. Pore-scale characteristics of multiphase flow in porous media: A comparison of air–water and oil–water experiments. Adv. Water Resourc. 2006, 29, 227–238. [Google Scholar] [CrossRef]
- Dang-Vu, T.; Hupka, J. Characterization of porous materials by capillary rise method. Physicochem. Probl. Miner. Process. 2005, 39, 47–65. [Google Scholar]
- Quéré, D.; Raphaël, É.; Ollitrault, J.-Y. Rebounds in a capillary tube. Langmuir 1999, 15, 3679–3682. [Google Scholar] [CrossRef]
- Zhmud, B.; Tiberg, F.; Hallstensson, K. Dynamics of capillary rise. J. Colloid Interface Sci. 2000, 228, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273. [Google Scholar] [CrossRef]
- Szekely, J.; Neumann, A.; Chuang, Y. The rate of capillary penetration and the applicability of the washburn equation. J. Colloid Interface Sci. 1971, 35, 273–278. [Google Scholar] [CrossRef]
- Xue, H.; Fang, Z.; Yang, Y.; Huang, J.; Zhou, L. Contact angle determined by spontaneous dynamic capillary rises with hydrostatic effects: Experiment and theory. Chem. Phys. Lett. 2006, 432, 326–330. [Google Scholar] [CrossRef]
- Patro, D.; Bhattacharyya, S.; Jayaram, V. Flow kinetics in porous ceramics: Understanding with non-uniform capillary models. J. Am. Ceram. Soc. 2007, 90, 3040–3046. [Google Scholar] [CrossRef]
- Chebbi, R. Dynamics of liquid penetration into capillary tubes. J. Colloid Interface Sci. 2007, 315, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Lundström, T.S.; Gustavsson, L.H.; Jēkabsons, N.; Jakovics, A. Wetting dynamics in multiscale porous media. Porous pore-doublet model, experiment and theory. AIChE J. 2008, 54, 372–380. [Google Scholar] [CrossRef]
- Amico, S.; Lekakou, C. Flow through a two-scale porosity, oriented fibre porous medium. Transp. Porous Media 2004, 54, 35–53. [Google Scholar] [CrossRef]
- Benltoufa, S.; Fayala, F.; BenNasrallah, S. Capillary rise in macro and micro pores of jersey knitting structure. J. Eng. Fabrics Fibers 2008, 3, 47–54. [Google Scholar]
- Wang, Y.; Holladay, J.D. Microreactor Technology and Process Intensification; ACS Publications: Washington, DC, USA, 2005. [Google Scholar]
- TeGrotenhuis, W.E.; Stenkamp, V.S. Testing of a Microchannel Partial Condenser and Phase Separator in Reduced gravity, Proceedings of the ASME 2003 1st International Conference on Microchannels and Minichannels, 2003; American Society of Mechanical Engineers: New York, NY, USA, 2003; pp. 699–705. [Google Scholar]
- Huang, X.; King, D.A.; Zheng, F.; Stenkamp, V.S.; TeGrotenhuis, W.E.; Roberts, B.Q.; King, D.L. Hydrodesulfurization of jp-8 fuel and its microchannel distillate using steam reformate. Catal. Today 2008, 136, 291–300. [Google Scholar] [CrossRef]
- Tegrotenhuis, W.E.; Wegeng, R.S.; Whyatt, G.A.; Stenkamp, V.S.; Gauglitz, P.A. Microsystem Capillary Separations. U.S. Patent 666,690,9B1, 23 December 2003. [Google Scholar]
- Tegrotenhuis, W.E.; Humble, P.H.; Lavender, C.A.; Caldwell, D.D. Enhanced Two Phase Flow in Heat Transfer Systems. U.S. Patent 8,596,341, 3 December 2013. [Google Scholar]
- Krishnan, S.; TeGrotenhuis, W.E. Dual-mode wicking structures for enhanced evaporative heat transfer. In Proceedings of the 14th International Refrigeration and Air Conditioning Conference, West Lafayette, IN, USA, 16–19 July 2012. [Google Scholar]
- Hendricks, T.J.; Krishnan, S.; Choi, C.; Chang, C.-H.; Paul, B. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int. J. Heat Mass Transf. 2010, 53, 3357–3365. [Google Scholar] [CrossRef]
- Bao, J.; Zimmler, M.A.; Capasso, F.; Wang, X.; Ren, Z. Broadband zno single-nanowire light-emitting diode. Nano Lett. 2006, 6, 1719–1722. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Sirringhaus, H. Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods. Nano Lett. 2005, 5, 2408–2413. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Takeuchi, N.; Shimada, S.; Masuya, K.; Ibe, K.; Tsunakawa, H.; Kuwabara, M. Room-temperature nanowire ultraviolet lasers: An aqueous pathway for zinc oxide nanowires with low defect density. J. Appl. Phys. 2005, 98, 094305. [Google Scholar] [CrossRef]
- Xiang, J.; Zhu, P.; Masuda, Y.; Okuya, M.; Kaneko, S.; Koumoto, K. Flexible solar-cell from zinc oxide nanocrystalline sheets self-assembled by an in-situ electrodeposition process. J. Nanosci. Nanotechnol. 2006, 6, 1797–1801. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, B.; Zhou, Z.; Li, Y.; Deng, Y. Solution synthesis of one-dimensional zno nanomaterials and their applications. Nanoscale 2010, 2, 1573–1587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Sun, L.; Yin, J.; Su, H.; Liao, C.; Yan, C. Control of zno morphology via a simple solution route. Chem. Mater. 2002, 14, 4172–4177. [Google Scholar] [CrossRef]
- Zhang, Y.; Mu, J. Controllable synthesis of flower-and rod-like zno nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate. Nanotechnology 2007, 18, 075606. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.H.; Su, Y.W.; Chang, C.H. Effects of fluid flow on the growth and assembly of zno nanocrystals in a continuous flow microreactor. Crystengcomm 2013, 15, 3326–3333. [Google Scholar] [CrossRef]
- Choi, C.H.; Chang, C.H. Aqueous synthesis of tailored zno nanocrystals, nanocrystal assemblies, and nanostructured films by physical means enabled by a continuous flow microreactor. Cryst. Growth Des. 2014, 14, 4759–4767. [Google Scholar] [CrossRef]
- Ortel, E.; Hertwig, A.; Berger, D.; Esposito, P.; Rossi, A.M.; Kraehnert, R.; Hodoroaba, V.-D. New approach on quantification of porosity of thin films via electron-excited X-ray spectra. Anal. Chem. 2016, 88, 7083–7090. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.K.; Gupta, B.S. Absorbent Technology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 13. [Google Scholar]
- Staples, T.L.; Shaffer, D.G. Wicking flow in irregular capillaries. Colloids Surf. A 2002, 204, 239–250. [Google Scholar] [CrossRef]
- Fries, N.; Dreyer, M. An analytic solution of capillary rise restrained by gravity. J. Colloid Interface Sci. 2008, 320, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Rogacs, A.; Steinbrenner, J.E.; Rowlette, J.A.; Weisse, J.M.; Zheng, X.L.; Goodson, K.E. Characterization of the wettability of thin nanostructured films in the presence of evaporation. J. Colloid Interface Sci. 2010, 349, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Fries, N.; Odic, K.; Conrath, M.; Dreyer, M. The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 2008, 321, 118–129. [Google Scholar] [CrossRef] [PubMed]
Width (cm) | Length (cm) | Thickness (µm) | Hydraulic Diameter of Liquid Channel (µm) | Ratio of Vapor to Liquid Volume |
---|---|---|---|---|
3.81 | 10.2 | 102 | 63 | 2.5~3 |
Symbol | Value |
---|---|
σlv [N/m] | 0.0239 |
cos ϴ | 1 |
ρ [kg/m3] | 789 |
g [m/s2] | 9.8 |
µ [NS/m2] | 0.0012 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, C.-H.; Krishnan, S.; TeGrotenhuis, W.; Chang, C.-H. Capillary Rise of Nanostructured Microwicks. Micromachines 2018, 9, 153. https://doi.org/10.3390/mi9040153
Choi C-H, Krishnan S, TeGrotenhuis W, Chang C-H. Capillary Rise of Nanostructured Microwicks. Micromachines. 2018; 9(4):153. https://doi.org/10.3390/mi9040153
Chicago/Turabian StyleChoi, Chang-Ho, Shankar Krishnan, Ward TeGrotenhuis, and Chih-Hung Chang. 2018. "Capillary Rise of Nanostructured Microwicks" Micromachines 9, no. 4: 153. https://doi.org/10.3390/mi9040153
APA StyleChoi, C. -H., Krishnan, S., TeGrotenhuis, W., & Chang, C. -H. (2018). Capillary Rise of Nanostructured Microwicks. Micromachines, 9(4), 153. https://doi.org/10.3390/mi9040153