Micro Droplet Formation towards Continuous Nanoparticles Synthesis
Abstract
:1. Introduction
2. Experimental
3. Hydrophilic Chip Application
4. Droplet Formation in Hydrophobic Chip
5. Simulation of Droplet Formation
6. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Glasnov, T. Continuous-Flow Chemistry in the Research Laboratory: Modern Organic Chemistry in Dedicated Reactors at the Dawn of the 21st Century; Springer International Publishing: Basel, Switzerland, 2016. [Google Scholar]
- Lummiss, J.A.M.; Morse, P.D.; Beingessner, R.L.; Jamison, T.F. Towards more efficient, greener syntheses through flow chemistry. Chem. Rec. 2017, 17, 667–680. [Google Scholar] [CrossRef] [PubMed]
- Bourne, J.R. Mixing and the selectivity of chemical reactions. Org. Process Res. Dev. 2003, 7, 471–508. [Google Scholar] [CrossRef]
- Niesz, K.; Hornyak, I.; Borcsek, B.; Darvas, F. Nanoparticle synthesis completed with in situ catalyst preparation performed on a high-pressure high-temperature continuous flow reactor. Microfluid. Nanofluid. 2008, 5, 411–416. [Google Scholar] [CrossRef]
- Porta, R.; Benaglia, M.; Puglisi, A. Flow chemistry: Recent developments in the synthesis of pharmaceutical products. Org. Process Res. Dev. 2016, 20, 2–25. [Google Scholar] [CrossRef]
- Du Toit, H.; Macdonald, T.J.; Huang, H.; Parkin, I.P.; Gavriilidis, A. Continuous flow synthesis of citrate capped gold nanoparticles using uv induced nucleation. RSC Adv. 2017, 7, 9632–9638. [Google Scholar] [CrossRef]
- Dencic, I.; Meuldijk, J.; Croon, M.; Hessel, V. From a review of noble metal versus enzyme catalysts for glucose oxidation under conventional conditions towards a process design analysis for continuous-flow operation. J. Flow Chem. 2012, 1, 13–23. [Google Scholar] [CrossRef]
- Hessel, V.; Löwe, H. Microchemical engineering: Components, plant concepts, user acceptance—Part II. Chem. Eng. Technol. 2003, 26, 391–408. [Google Scholar] [CrossRef]
- Hessel, V.; Löwe, H. Microchemical engineering: Components, plant concepts user acceptance—Part I. Chem. Eng. Technol. 2003, 26, 13–24. [Google Scholar] [CrossRef]
- Hessel, V.; Löwe, H. Microchemical engineering: Components, plant concepts user acceptance—Part III. Chem. Eng. Technol. 2003, 26, 531–544. [Google Scholar] [CrossRef]
- The Reality of Continuous Processing. Available online: https://www.manufacturingchemist.com/technical/article_page/The_reality_of_continuous_processing/36088 (accessed on 21 July 2017).
- Gutmann, B.; Kappe, C.O. Continuous manufacturing in pharma—An unstoppable trend? Eur. Pharm. Rev. 2015, 20, 37–42. [Google Scholar]
- Current FDA Perspective for Continuous Manufacturing. Available online: https://iscmp2016.mit.edu/sites/default/files/documents/FDA%20MIT-CMAC%20for%20CM%202016%20Ver6.pdf (accessed on 21 July 2017).
- FDA Calls on Manufacturers to Begin Switch from Batch to Continuous Production. Available online: http://www.in-pharmatechnologist.com/Processing/FDA-calls-on-manufacturers-to-begin-switch-from-batch-to-continuous-production (accessed on 21 July 2017).
- Wiles, C.; Watts, P. Continuous flow reactors, a tool for the modern synthetic chemist. Eur. J. Org. Chem. 2008, 2008, 1655–1671. [Google Scholar] [CrossRef]
- Noel, T.; Buchwald, S.L. Cross-coupling in flow. Chem. Soc. Rev. 2011, 40, 5010–5029. [Google Scholar] [CrossRef] [PubMed]
- Glasnov, T.N.; Kappe, C.O. Continuous-flow syntheses of heterocycles. J. Heterocycl. Chem. 2011, 48, 11–30. [Google Scholar] [CrossRef]
- Gutmann, B.; Cantillo, D.; Kappe, C.O. Continuous-flow technology—A tool for the safe manufacturing of active pharmaceutical ingredients. Angew. Chem. Int. Ed. 2015, 54, 6688–6728. [Google Scholar] [CrossRef] [PubMed]
- Movsisyan, M.; Delbeke, E.I.P.; Berton, J.K.E.T.; Battilocchio, C.; Ley, S.V.; Stevens, C.V. Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev. 2016, 45, 4892–4928. [Google Scholar] [CrossRef] [PubMed]
- Jähnisch, K.; Hessel, V.; Löwe, H.; Baerns, M. Chemistry in microstructured reactors. Angew. Chem. Int. Ed. 2004, 43, 406–446. [Google Scholar] [CrossRef] [PubMed]
- Schülein, J.; Minrath, I.; Pommersheim, R.; Löwe, H. Continuous-flow synthesis of Ni(0) nanoparticles using a cone channel nozzle or a micro coaxial-injection mixer. J. Flow Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Fitzner, K.; Hessel, V.; Löb, P.; Maskos, M.; Metzke, D.; Pacławski, K.; Wojnicki, M. Synthesis of gold nanoparticles in an interdigital micromixer using ascorbic acid and sodium borohydride as reducers. Chem. Eng. J. 2011, 171, 279–290. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K.J. The synthesis of stable platinum nanoparticles in the microreactor. Arch. Metall. Mater. 2014, 59, 509–512. [Google Scholar] [CrossRef]
- Pacławski, K.; Streszewski, B.; Jaworski, W.; Luty-Błocho, M.; Fitzner, K. Gold nanoparticles formation via Gold(III) chloride complex ions reduction with glucose in the batch and in the flow microreactor systems. Colloids Surf. A Physicochem. Eng. Asp. 2012, 413, 208–215. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Pacławski, K.; Fitzner, K. The synthesis of platinum nanoparticles and their deposition on the active carbon fibers in one microreactor cycle. Chem. Eng. J. 2013, 226, 46–51. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K.J.; Fitzner, K. Micro-continuous flow synthesis of gold nanoparticles and integrated deposition on suspended sheets of graphene oxide. Chem. Eng. J. 2013, 225, 597–606. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M. Single-step synthesis of onion-like Au—Pd—PtNPs nanoparticles using microflow system. J. Flow Chem. 2015, 5, 197–200. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Mech, K.; Grzonka, J.; Fitzner, K.; Kurzydowski, K.J. Catalytic properties of platinum nanoparticles obtained in a single step simultaneous reduction of PT(IV) ions and graphene oxide. J. Flow Chem. 2015, 5, 22–30. [Google Scholar] [CrossRef]
- Wojnicki, M.; Luty-Błocho, M.; Dobosz, I.; Grzonka, J.; Pacławski, K.; Kurzydłowski, K.; Fitzner, K. Electro-oxidation of glucose in alkaline media on graphene sheets decorated with gold nanoparticles. Mater. Sci. Appl. 2013, 4, 162–169. [Google Scholar] [CrossRef]
- Peterson, D.A.; Padmavathi, C.; Paul, B.K. High production rate synthesis of cds nanoparticles using a reverse oscillatory flow method. J. Micro Nano Manuf. 2014, 2, 031004. [Google Scholar] [CrossRef]
- Zhang, L.; Hessel, V.; Peng, J.; Wang, Q.; Zhang, L. Co and ni extraction and separation in segmented micro-flow using a coiled flow inverter. Chem. Eng. J. 2017, 307, 1–8. [Google Scholar] [CrossRef]
- Sebastian, V.; Smith, C.D.; Jensen, K.F. Shape-controlled continuous synthesis of metal nanostructures. Nanoscale 2016, 8, 7534–7543. [Google Scholar] [CrossRef] [PubMed]
- Yujuan, H.; Ki-Joong, K.; Chih-Hung, C. Continuous, size and shape-control synthesis of hollow silica nanoparticles enabled by a microreactor-assisted rapid mixing process. Nanotechnology 2017, 28, 235602. [Google Scholar]
- Kang, Y.; Pyo, J.B.; Ye, X.; Diaz, R.E.; Gordon, T.R.; Stach, E.A.; Murray, C.B. Shape-controlled synthesis of pt nanocrystals: The role of metal carbonyls. ACS Nano 2013, 7, 645–653. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K. Using flow technologies to direct the synthesis and assembly of materials in solution. Chem. Cent. J. 2017, 11, 4. [Google Scholar] [CrossRef] [PubMed]
- Phillips, T.W.; Lignos, I.G.; Maceiczyk, R.M.; deMello, A.J.; deMello, J.C. Nanocrystal synthesis in microfluidic reactors: Where next? Lab Chip 2014, 14, 3172–3180. [Google Scholar] [CrossRef] [PubMed]
- Gobby, D.; Angeli, P.; Gavriilidis, A. Mixing characteristics of t-type microfluidic mixers. J. Micromech. Microeng. 2001, 11, 126–132. [Google Scholar] [CrossRef]
- Hessel, V.; Löwe, H.; Schönfeld, F. Micromixers—A review on passive and active mixing principles. Chem. Eng. Sci. 2005, 60, 2479–2501. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Chang, C.-L.; Wang, Y.-N.; Fu, L.-M. Microfluidic mixing: A review. Int. J. Mol. Sci. 2011, 12, 3263–3287. [Google Scholar] [CrossRef] [PubMed]
- Ward, K.; Fan, Z.H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 2015, 25, 094001. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. Engl. 2006, 45, 7336–7356. [Google Scholar] [CrossRef] [PubMed]
- Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-X.; He, L.; Qiao, S.Z.; Middelberg, A.P.J. Nanoparticle synthesis in microreactors. Chem. Eng. Sci. 2011, 66, 1463–1479. [Google Scholar] [CrossRef]
- Kraus, I.; Li, S.; Knauer, A.; Schmutz, M.; Faerber, J.; Serra, C.A.; Köhler, M. Continuous-microflow synthesis and morphological characterization of multiscale composite materials based on polymer microparticles and inorganic nanoparticles. J. Flow Chem. 2014, 4, 72–78. [Google Scholar] [CrossRef]
- Phillips, T.W.; Bannock, J.H.; deMello, J.C. Microscale extraction and phase separation using a porous capillary. Lab Chip 2015, 15, 2960–2967. [Google Scholar] [CrossRef] [PubMed]
- Shestopalov, I.; Tice, J.D.; Ismagilov, R.F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 2004, 4, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Feng, L.; Lin, T. Fluid mixing in droplet-based microfluidics with a serpentine microchannel. RSC Adv. 2015, 5, 104138–104144. [Google Scholar] [CrossRef]
- Wagner, J.; Köhler, J.M. Continuous synthesis of gold nanoparticles in a microreactor. Nano Lett. 2005, 5, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Hessel, V.; Peng, J. Liquid-liquid extraction for the separation of Co(II) from Ni(II) with cyanex 272 using a pilot scale re-entrance flow microreactor. Chem. Eng. J. 2018, 332, 131–139. [Google Scholar] [CrossRef]
- Tsaoulidis, D.; Angeli, P. Effect of channel size on mass transfer during liquid–liquid plug flow in small scale extractors. Chem. Eng. J. 2015, 262, 785–793. [Google Scholar] [CrossRef]
- Li, Q.; Angeli, P. Intensified Eu(III) extraction using ionic liquids in small channels. Chem. Eng. Sci. 2016, 143, 276–286. [Google Scholar] [CrossRef]
- Darekar, M.; Sen, N.; Singh, K.K.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K. Liquid–liquid extraction in microchannels with Zinc–D2EHPA system. Hydrometallurgy 2014, 144–145, 54–62. [Google Scholar] [CrossRef]
- Priest, C.; Zhou, J.; Sedev, R.; Ralston, J.; Aota, A.; Mawatari, K.; Kitamori, T. Microfluidic extraction of copper from particle-laden solutions. Int. J. Miner. Process. 2011, 98, 168–173. [Google Scholar] [CrossRef]
- Riche, C.T.; Roberts, E.J.; Gupta, M.; Brutchey, R.L.; Malmstadt, N. Flow invariant droplet formation for stable parallel microreactors. Nat. Commun. 2016, 7, 10780. [Google Scholar] [CrossRef] [PubMed]
- Pit, A.M.; Bonestroo, S.; Wijnperlé, D.; Duits, M.H.G.; Mugele, F. Electrode-assisted trapping and release of droplets on hydrophilic patches in a hydrophobic microchannel. Microfluid. Nanofluid. 2016, 20, 123. [Google Scholar] [CrossRef]
- Gu, H.; Duits, M.H.G.; Mugele, F. Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 2011, 12, 2572–2597. [Google Scholar] [CrossRef] [PubMed]
- Günthera, P.M.; Großa, G.A.; Wagnera, J.; Jahnb, F.; Köhlera, J.M. Introduction of surface-modified au-nanoparticles into the microflow-through polymerization of styrene. Chem. Eng. J. 2008, 135, S126–S130. [Google Scholar] [CrossRef]
- Ghosh, P.; Han, G.; De, M.; Kim, C.K.; Rotello, V.M. Gold nanoparticles in delivery applications. Adv. Drug Deliv. Rev. 2008, 60, 1307–1315. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Joshi, H.; Pasricha, R.; Mandale, A.B.; Sastry, M. Phase transfer of silver nanoparticles from aqueous to organic solutions using fatty amine molecules. J. Colloid Interface Sci. 2003, 264, 396–401. [Google Scholar] [CrossRef]
- Swami, A.; Jadhav, A.; Kumar, A.; Adyanthaya, S.D.; Sastry, M. Water-dispersible nanoparticles via interdigitation of sodium dodecylsulphate molecules in octadecylamine-capped gold nanoparticles at a liquid-liquid interface. J. Chem. Sci. 2003, 115, 679–687. [Google Scholar] [CrossRef]
- Lan, W.; Li, S.; Luo, G. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel. Chem. Eng. Sci. 2015, 134, 76–85. [Google Scholar] [CrossRef]
- Li, H.; Xue, Y.; Xu, M.; Zhao, W.; Zong, C.; Liu, X.; Zhang, Q. Viscosity based droplet size controlling in negative pressure driven droplets generator for large-scale particle synthesis. Electrophoresis 2017, 38, 1736–1742. [Google Scholar] [CrossRef] [PubMed]
- Antonoff, G. On the validity of antonoff’s rule. J. Phys. Chem. 1942, 46, 497–499. [Google Scholar] [CrossRef]
- Lan, W.; Li, S.; Wang, Y.; Luo, G. CFD simulation of droplet formation in microchannels by a modified level set method. Ind. Eng. Chem. Res. 2014, 53, 4913–4921. [Google Scholar] [CrossRef]
- Vigneaux, P. Droplets in microchannels with level set method. In Proceedings of the 2006 European Conference on Computational Fluid Dynamics (ECCOMAS CFD), Egmond aan Zee, The Netherlands, 5–8 September 2006; Delft University of Technology: Delft, The Netherlands; European Community on Computational Methods in Applied Sciences (ECCOMAS): Egmond aan Zee, The Netherlands. [Google Scholar]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wojnicki, M.; Luty-Błocho, M.; Hessel, V.; Csapó, E.; Ungor, D.; Fitzner, K. Micro Droplet Formation towards Continuous Nanoparticles Synthesis. Micromachines 2018, 9, 248. https://doi.org/10.3390/mi9050248
Wojnicki M, Luty-Błocho M, Hessel V, Csapó E, Ungor D, Fitzner K. Micro Droplet Formation towards Continuous Nanoparticles Synthesis. Micromachines. 2018; 9(5):248. https://doi.org/10.3390/mi9050248
Chicago/Turabian StyleWojnicki, Marek, Magdalena Luty-Błocho, Volker Hessel, Edit Csapó, Ditta Ungor, and Krzysztof Fitzner. 2018. "Micro Droplet Formation towards Continuous Nanoparticles Synthesis" Micromachines 9, no. 5: 248. https://doi.org/10.3390/mi9050248
APA StyleWojnicki, M., Luty-Błocho, M., Hessel, V., Csapó, E., Ungor, D., & Fitzner, K. (2018). Micro Droplet Formation towards Continuous Nanoparticles Synthesis. Micromachines, 9(5), 248. https://doi.org/10.3390/mi9050248