Side-Group Effect on Electron Transport of Single Molecular Junctions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Su, T.A.; Neupane, M.; Steigerwald, M.L.; Venkataraman, L.; Nuckolls, C. Chemical principles of single-molecule electronics. Nat. Rev. Mater. 2016, 1, 16002. [Google Scholar] [CrossRef]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-scale electronics: From concept to function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Murai, D.; Marques-Gonzalez, S.; Nakamura, H.; Komoto, Y.; Fujii, S.; Nishino, T.; Ikeda, K.; Tsukagoshi, K.; Kiguchi, M. Site-selection in single-molecule junction for highly reproducible molecular electronics. J. Am. Chem. Soc. 2016, 138, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Isshiki, Y.; Matsuzawa, Y.; Fujii, S.; Kiguchi, M. Investigation on single-molecule junctions based on current-voltage characteristics. Micromachines 2018, 9, 67. [Google Scholar] [CrossRef]
- Xu, B.Q.; Tao, N.J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, L.; Klare, J.E.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904–907. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.S.; Chen, Z.B.; Liu, S.H.; Jin, S.; Liu, L.; Zhang, H.M.; Xie, Z.X.; Jiang, Y.B.; Mao, B.W. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C 2008, 112, 3935–3940. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.B.; Liu, J.Y.; Lu, M.; Yang, D.Z.; Yang, F.Z.; Tian, Z.Q. An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Res. 2011, 4, 1199–1207. [Google Scholar] [CrossRef]
- Perrin, M.L.; Frisenda, R.; Koole, M.; Seldenthuis, J.S.; Gil, J.A.C.; Valkenier, H.; Hummelen, J.C.; Renaud, N.; Grozema, F.C.; Thijssen, J.M.; et al. Large negative differential conductance in single-molecule break junctions. Nat. Nanotechnol. 2014, 9, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.L.; Chen, F.; Hong, Z.W.; Zheng, J.F.; Fillaud, L.; Yuan, Y.; Huang, M.L.; Shao, Y.; Zhou, X.S.; Chen, J.Z.; et al. Precise tuning of single molecule conductance in an electrochemical environment. Nanoscale 2018, 10, 7026–7032. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Y.H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X.S.; Zhao, Z.; Tang, B.Z. Multichannel conductance of folded single-molecule wires aided by through-space conjugation. Angew. Chem. Int. Ed. 2015, 54, 4231–4235. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.S.; Liu, L.; Fortgang, P.; Lefevre, A.-S.; Serra-Muns, A.; Raouafi, N.; Amatore, C.; Mao, B.W.; Maisonhaute, E.; Schollhorn, B. Do molecular conductances correlate with electrochemical rate constants? Experimental insights. J. Am. Chem. Soc. 2011, 133, 7509–7516. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, C.R.; Leary, E.; Castellanos-Gómez, A.S.; Rubio-Bollinger, G.; González, M.T.; Agraït, N.S. Influence of binding groups on molecular junction formation. J. Am. Chem. Soc. 2011, 133, 14313–14319. [Google Scholar] [CrossRef] [PubMed]
- Haiss, W.; Wang, C.S.; Grace, I.; Batsanov, A.S.; Schiffrin, D.J.; Higgins, S.J.; Bryce, M.R.; Lambert, C.J.; Nichols, R.J. Precision control of single-molecule electrical junctions. Nat. Mater. 2006, 5, 995–1002. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.Y.; Nagahara, L.A.; Rawlett, A.M.; Tao, N.J. Electrochemical gate-controlled conductance of single oligo(phenylene ethynylene)s. J. Am. Chem. Soc. 2005, 127, 9235–9240. [Google Scholar] [CrossRef] [PubMed]
- Venkataraman, L.; Park, Y.S.; Whalley, A.C.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Electronics and chemistry: Varying single-molecule junction conductance using chemical substituents. Nano Lett. 2007, 7, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Kaliginedi, V.; Moreno-García, P.; Valkenier, H.; Hong, W.; García-Suárez, V.M.; Buiter, P.; Otten, J.L.H.; Hummelen, J.C.; Lambert, C.J.; Wandlowski, T. Correlations between molecular structure and single-junction conductance: A case study with oligo(phenylene-ethynylene)-type wires. J. Am. Chem. Soc. 2012, 134, 5262–5275. [Google Scholar] [CrossRef] [PubMed]
- David, V.; Artem, M.; Mark, E.; Markus, N.; Thomas, W.; Marcel, M. Chemically controlled conductivity: Torsion-angle dependence in a single-molecule biphenyldithiol junction. Angew. Chem. Int. Ed. 2009, 48, 8886–8890. [Google Scholar]
- Mishchenko, A.; Vonlanthen, D.; Meded, V.; Burkle, M.; Li, C.; Pobelov, I.V.; Bagrets, A.; Viljas, J.K.; Pauly, F.; Evers, F.; et al. Influence of conformation on conductance of biphenyl-dithiol single-molecule contacts. Nano Lett. 2010, 10, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jian, Y.; Wang, J.; He, C.; Li, X.; Liu, T.; Duan, C. Post-modification of a mof through a fluorescent-labeling technology for the selective sensing and adsorption of ag+ in aqueous solution. Dalton Trans. 2012, 41, 10153–10155. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.C.; Peng, L.L.; Li, W.Q.; Chen, F.; Wang, H.G.; Shao, Y.; Zhou, X.S.; Zhao, X.Q.; Xie, H.; Niu, Z.J. Influence of molecular structure on contact interaction between thiophene anchoring group and au electrode. J. Phys. Chem. C 2017, 121, 1472–1476. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Comparative dft study of van der waals complexes: Rare-gas dimers, alkaline-earth dimers, zinc dimer, and zinc-rare-gas dimers. J. Phys. Chem. A 2006, 110, 5121–5129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. Density functional for spectroscopy: No long-range self-interaction error, good performance for rydberg and charge-transfer states, and better performance on average than b3lyp for ground states. J. Phys. Chem. A 2006, 110, 13126–13130. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The m06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four m06-class functionals and 12 other functionals. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar]
- Binning, R.C.; Curtiss, L.A. Compact contracted basis sets for third-row atoms: Ga–kr. J. Comput. Chem. 1990, 11, 1206–1216. [Google Scholar] [CrossRef]
- Gordon, M.S. The isomers of silacyclopropane. Chem. Phys. Lett. 1980, 76, 163–168. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Chen, Z.B.; Hong, Z.W.; Li, D.F.; Wang, Y.H.; Zheng, J.F.; Shao, Y.; Zhou, X.S. The conductance of pyridine-based molecules measured in ambient air and electrolyte solution: Effect of surrounding. Int. J. Electrochem. Sci. 2015, 10, 2931–2938. [Google Scholar]
- Quek, S.Y.; Kamenetska, M.; Steigerwald, M.L.; Choi, H.J.; Louie, S.G.; Hybertsen, M.S.; Neaton, J.B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Kamenetska, M.; Quek, S.Y.; Whalley, A.C.; Steigerwald, M.L.; Choi, H.J.; Louie, S.G.; Nuckolls, C.; Hybertsen, M.S.; Neaton, J.B.; Venkataraman, L. Conductance and geometry of pyridine-linked single-molecule junctions. J. Am. Chem. Soc. 2010, 132, 6817–6821. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Dubi, Y. Negative differential conductance in molecular junctions: An overview of experiment and theory. J. Phys. Condens. Matter 2015, 27, 263202. [Google Scholar] [CrossRef] [PubMed]
- Gergel-Hackett, N.; Majumdar, N.; Martin, Z.; Swami, N.; Harriott, L.R.; Bean, J.C.; Pattanaik, G.; Zangari, G.; Zhu, Y.; Pu, I.; et al. Effects of molecular environments on the electrical switching with memory of nitro-containing opes. J. Vac. Sci. Technol. A 2006, 24, 1243–1248. [Google Scholar] [CrossRef]
- Cheng, J.-F.; Zhou, L.; Wen, Z.; Yan, Q.; Han, Q.; Gao, L. The enhanced spin-polarized transport behaviors through cobalt benzene–porphyrin–benzene molecular junctions: The effect of functional groups. J. Phys. Condens. Matter 2017, 29, 175201. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.Y.; Peng, Z.L.; Hou, R.; Liang, J.H.; Zheng, J.F.; Zhou, X.Y.; Zhou, X.S.; Jin, S.; Niu, Z.J.; Mao, B.W. Enhancing electron transport in molecular wires by insertion of a ferrocene center. Phys. Chem. Chem. Phys. 2014, 16, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Zotti, L.A.; Kirchner, T.; Cuevas, J.C.; Pauly, F.; Huhn, T.; Scheer, E.; Erbe, A. Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 2010, 6, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Diaz-Fernandez, Y.A.; Gschneidtner, T.A.; Westerlund, F.; Lara-Avila, S.; Moth-Poulsen, K. Single-molecule electronics: From chemical design to functional devices. Chem. Soc. Rev. 2014, 43, 7378–7411. [Google Scholar] [CrossRef] [PubMed]
- Kaliginedi, V.V.; Rudnev, A.; Moreno-Garcia, P.; Baghernejad, M.; Huang, C.; Hong, W.; Wandlowski, T. Promising anchoring groups for single-molecule conductance measurements. Phys. Chem. Chem. Phys. 2014, 16, 23529–23539. [Google Scholar] [CrossRef] [PubMed]
- Ismael, A.K.; Wang, K.; Vezzoli, A.; Al-Khaykanee, M.K.; Gallagher, H.E.; Grace, I.M.; Lambert, C.J.; Xu, B.Q.; Nichols, R.J.; Higgins, S.J. Side-group-mediated mechanical conductance switching in molecular junctions. Angew. Chem. Int. Ed. 2017, 56, 15378–15382. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gonzalez, S.; Xie, Z.; Galangau, O.; Selvanathan, P.; Norel, L.; Van Dyck, C.; Costuas, K.; Frisbie, C.D.; Rigaut, S.; Cornil, J. Homo level pinning in molecular junctions: Joint theoretical and experimental evidence. J. Phyc. Chem. Lett. 2018, 9, 2394–2403. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Bâldea, I.; Smith, C.E.; Wu, Y.; Frisbie, C.D. Experimental and theoretical analysis of nanotransport in oligophenylene dithiol junctions as a function of molecular length and contact work function. ACS Nano 2015, 9, 8022–8036. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.E.; Xie, Z.; Baldea, I.; Frisbie, C.D. Work function and temperature dependence of electron tunneling through an n-type perylene diimide molecular junction with isocyanide surface linkers. Nanoscale 2018, 10, 964–975. [Google Scholar] [CrossRef] [PubMed]
Molecule | Twist Angle | Conductance |
---|---|---|
BPY | 35° | 10−3.1 G0, 10−3.6 G0 |
BPY-N | 52° | 10−3.8 G0 |
BPY-2N | 77° | 10−3.9 G0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, M.-L.; Zhang, F.; Wang, C.; Zheng, J.-F.; Mao, H.-L.; Xie, H.-J.; Shao, Y.; Zhou, X.-S.; Liu, J.-X.; Zhuang, J.-L. Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines 2018, 9, 234. https://doi.org/10.3390/mi9050234
Huang M-L, Zhang F, Wang C, Zheng J-F, Mao H-L, Xie H-J, Shao Y, Zhou X-S, Liu J-X, Zhuang J-L. Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines. 2018; 9(5):234. https://doi.org/10.3390/mi9050234
Chicago/Turabian StyleHuang, Miao-Ling, Fan Zhang, Chen Wang, Ju-Fang Zheng, Hui-Ling Mao, Hu-Jun Xie, Yong Shao, Xiao-Shun Zhou, Jin-Xuan Liu, and Jin-Liang Zhuang. 2018. "Side-Group Effect on Electron Transport of Single Molecular Junctions" Micromachines 9, no. 5: 234. https://doi.org/10.3390/mi9050234
APA StyleHuang, M. -L., Zhang, F., Wang, C., Zheng, J. -F., Mao, H. -L., Xie, H. -J., Shao, Y., Zhou, X. -S., Liu, J. -X., & Zhuang, J. -L. (2018). Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines, 9(5), 234. https://doi.org/10.3390/mi9050234