Glassy Microspheres for Energy Applications
Abstract
:1. Introduction
2. Materials and Fabrication Methods
2.1. Oxide Glass Microspheres
2.2. Chalcogenide Glass Microspheres
2.3. Polymer Microspheres
3. Applications in the Field of Energy
3.1. Energy Saving
3.2. Energy Storage and Production
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- IEA. Global Energy & CO2 Status Report. 2017. Available online: https://www.iea.org/publications/freepublications/publication/GECO2017.pdf (accessed on 10 May 2018).
- Chiasera, A.; Dumeige, Y.; Féron, P.; Ferrari, M.; Jestin, Y.; Nunzi Conti, G.; Pelli, S.; Soria, S.; Righini, G.C. Spherical whispering-gallery-mode microresonators. Laser Photonics Rev. 2010, 4, 457–482. [Google Scholar] [CrossRef]
- Righini, G.C.; Dumeige, Y.; Féron, P.; Ferrari, M.; Nunzi Conti, G.; Ristic, D.; Soria, S. Whispering gallery mode microresonators: Fundamentals and applications. Riv. Nuovo Cimento 2011, 34, 435–488. [Google Scholar]
- Righini, G.C. Glass micro- and nanospheres. Physics and applications; Pan Stanford Publishing: Singapore, 2018. [Google Scholar]
- Ghalichechian, N.; Modafe, A.; Beyaz, M.I.; Ghodssi, R. Design, Fabrication, and characterization of a rotary micromotor supported on microball bearings. J. Microelectromech. Syst. 2008, 17, 632–642. [Google Scholar] [CrossRef]
- Yi, R.; Shi, R.; Gao, G.; Zhang, N.; Cui, X.; He, Y.; Liu, X. Hollow metallic microspheres: Fabrication and characterization. J. Phys. Chem. C 2009, 113, 1222–1226. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Inaba, K.; Iida, T.; Ishihara, H.; Ichikawa, S.; Ashida, M. Fabrication of single-crystalline microspheres with high sphericity from anisotropic materials. Sci. Rep. 2014, 4, 5186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gulyaev, I. Experience in plasma production of hollow ceramic microspheres with required wall thickness. Ceram. Int. 2015, 41, 101–107. [Google Scholar] [CrossRef]
- Fan, K.C.; Cheng, F.; Wang, W.; Chen, Y.; Lin, J.Y. A scanning contact probe for a micro-coordinate measuring machine (CMM). Meas. Sci. Technol. 2010, 21, 054002. [Google Scholar] [CrossRef]
- Ruan, Y.; Boyd, K.; Ji, H.; Francois, A.; Ebendorff-Heidepriem, H.; Munch, J.; Monro, T.M. Tellurite microspheres for nanoparticle sensing and novel light sources. Opt. Express 2014, 22, 11995–12006. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Murugan, G.S.; Lee, T.; Ding, M.; Brambilla, G.; Semenova, Y.; Wu, Q.; Koizumi, F.; Farrell, G. High-Q bismuth-silicate nonlinear glass microsphere resonators. IEEE Photonics J. 2012, 4, 1013–1020. [Google Scholar] [CrossRef]
- Yu, H.; Huang, Q.; Zhao, J. Fabrication of an optical fiber micro-sphere with a diameter of several tens of micrometers. Materials 2014, 7, 4878–4895. [Google Scholar] [CrossRef] [PubMed]
- Nair, V.N.; Abraham, B.; MacKay, J.; Box, G.; Kacker, R.N.; Lorenzen, T.J.; Lucas, J.M.; Myers, R.H.; Vining, G.G.; Nelder, J.A.; et al. Taguchi’s parameter design: A panel discussion. Technometrics 1992, 34, 127–161. [Google Scholar] [CrossRef]
- Brenci, M.; Calzolai, R.; Cosi, F.; Nunzi Conti, G.; Pelli, S.; Righini, G.C. Microspherical resonators for biophotonic sensors. In Proceedings of the International Society for Optical Engineering (SPIE), Warsaw, Poland, 20–22 October 2004. [Google Scholar]
- Yano, T.; Kishi, T.; Kumagai, T. Glass microspheres for optics. Inter. J. Appl. Glass Sci. 2015, 6, 375–386. [Google Scholar] [CrossRef]
- Nunzi Conti, G.; Chiasera, A.; Ghisa, L.; Berneschi, S.; Brenci, M.; Dumeige, Y.; Pelli, S.; Sebastiani, S.; Féron, P.; Ferrari, M.; et al. Spectroscopic and lasing properties of Er3+-doped glass microspheres. J. Non-Cryst. Solids 2006, 352, 2360–2363. [Google Scholar] [CrossRef]
- Peng, X.; Song, F.; Jiang, S.; Peyghambarian, N.; Kuwata-Gonokami, M.; Xu, L. Fiber-taper-coupled L-band Er3+-doped tellurite glass microsphere laser. Appl. Phys. Lett. 2003, 82, 1497–1499. [Google Scholar] [CrossRef]
- Berneschi, S.; Baldini, F.; Barucci, A.; Cosci, A.; Cosi, F.; Farnesi, D.; Nunzi Conti, G.; Righini, G.C.; Soria, S.; Tombelli, S.; et al. Localized biomolecules immobilization in optical microbubble resonators. In Proceedings of the 2016 SPIE, Laer and Applications, San Francisco, CA, USA, 16–18 February 2016. [Google Scholar]
- Yang, Y.; Ward, J.; Chormaic, S.N. Quasi-droplet microbubbles for high resolution sensing applications. Opt. Express 2014, 22, 6881–6898. [Google Scholar] [CrossRef] [PubMed]
- Veatch, F.; Alford, H.E.; Croft, R.D. Method of Producing Hollow Glass Spheres. U.S. Patent 2,978,339, 4 April 1961. [Google Scholar]
- MicroMarketMonitor. Available online: http://www.micromarketmonitor.com/market-report/glass-microspheres-reports-6570147015.html (accessed on 18 May 2018).
- Elliott, S.R. Chalcogenide phase-change materials: Past and future. Int. J. Appl. Glass Sci. 2015, 6, 15–18. [Google Scholar] [CrossRef]
- Sanghera, J.; Shaw, L.B.; Aggarwal, I.D. Applications of chalcogenide glass optical fibers. C. R. Chim. 2002, 5, 873–883. [Google Scholar] [CrossRef]
- Elliott, G.R.; Hewak, D.W.; Murugan, G.S.; Wilkinson, J.S. Chalcogenide glass microspheres; their production, characterization and potential. Opt. Express 2007, 15, 17542–17553. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Aryanfar, I.; Lim, K.S.; Chong, W.Y.; Harun, S.W. Thermal response of chalcogenide microsphere resonators. Quantum Electron. 2012, 42, 462–464. [Google Scholar] [CrossRef]
- Palma, G.; Bia, P.; Mescia, L.; Yano, T.; Nazabal, V.; Taguchi, J.; Moréac, A.; Prudenzano, F. Design of fiber coupled Er3+: Chalcogenide microsphere amplifier via particle swarm optimization algorithm. Opt. Eng. 2013, 53, 071805. [Google Scholar] [CrossRef]
- Palma, G.; Falconi, M.C.; Starecki, F.; Nazabal, V.; Yano, T.; Kishi, T.; Kumagai, T.; Prudenzano, F. Novel double step approach for optical sensing via microsphere WGM resonance. Opt. Express 2016, 24, 26956–26971. [Google Scholar] [CrossRef] [PubMed]
- Aldakov, D.; Lefrançois, A.; Reiss, P. Ternary and quaternary metal chalcogenide nanocrystals: Synthesis, properties and applications. J. Mater. Chem. C 2013, 1, 3756–3776. [Google Scholar] [CrossRef]
- Cospheric. Available online: http://www.cospheric.com/polyethylene_PE_microspheres_beads.htm (accessed on 9 June 2018).
- Polysciences. Available online: http://www.polysciences.com/default/catalog-products/microspheres-particles/polymer-microspheres/polybead-sup-r-sup-microspheres/polybead-sup-r-sup-non-functionalized-microspheres (accessed on 10 May 2018).
- Magsphere. Available online: http://www.magsphere.com/Products/Polystyrene-Latex-Particle/polystyrene-latex-particle.html (accessed on 10 May 2018).
- Microspheres-Nanospheres. Available online: http://www.microspheres-nanospheres.com/Microspheres/Organic/Polystyrene/PS%20Plain.htm (accessed on 10 May 2018).
- Goodfellow. Available online: http://www.goodfellow.com/pdf/4579_1111010.pdf (accessed on 21 July 2018).
- Microbeads. Available online: http://www.micro-beads.com/Products.aspx (accessed on 10 May 2018).
- Degradex. Available online: http://www.degradex.com/pmma-microspheres.html (accessed on 10 May 2018).
- Dong, C.-H.; He, L.; Xiao, Y.-F.; Gaddam, V.R.; Ozdemir, S.K.; Han, Z.-F.; Guo, G.-C.; Yang, L. Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Appl. Phys. Lett. 2009, 94, 231119. [Google Scholar] [CrossRef]
- Grilli, S.; Coppola, S.; Vespini, V.; Merola, F.; Finizio, A.; Ferraro, P. 3D lithography by rapid curing of the liquid instabilities at nanoscale. Proc. Natl. Acad. Sci. USA 2011, 108, 15106–15111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, B.; Hansen, J.H.; Hvilsted, S.; Ladegaard Skov, A. Polydimethylsiloxane microspheres with poly(methyl methacrylate) coating: Modelling, preparation, and characterization. Can. J. Chem. Eng. 2015, 93, 1744–1752. [Google Scholar] [CrossRef] [Green Version]
- Gu, G.; Chen, L.; Fu, H.; Che, K.; Cai, Z.; Xu, H. UV-curable adhesive microsphere whispering gallery mode resonators. Chin. Opt. Lett. 2013, 11, 101401. [Google Scholar]
- Omi, S.; Katami, K.; Yamamoto, A.; Iso, M. Synthesis of polymeric microspheres employing SPG emulsification technique. J. Appl. Polym. Sci. 1994, 51, 1–11. [Google Scholar] [CrossRef]
- Nussinovitch, A. Polymer Macro- and Micro-Gel Beads: Fundamentals and Applications; Springer Sci. & Business Media: Berlin, German, 2010. [Google Scholar]
- Kumacheva, E.; Garstecki, P. Microfluidic Reactors for Polymer Particles; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Rembaum, A.; Tokes, Z.A. Microspheres: Medical and Biological Applications (1988); CRC Press Revivals: Boca Raton, FL, USA, 2017. [Google Scholar]
- Senior, R. Imagify™ (perflubutane polymer microspheres) injectable suspension for the assessment of coronary artery disease. Expert Rev. Cardiovasc. Ther. 2007, 5, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Farook, U.; Edirisinghe, M.J.; Stride, E.; Colombo, P. Novel co-axial electrohydrodynamic in-situ preparation of liquid-filled polymer-shell microspheres for biomedical applications. J. Microencapsul. 2008, 25, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Wang, S.; Song, H.; Liu, H.; Li, J.; Liu, N. A review of recent progress in preparation of hollow polymer microspheres. Petrol. Sci. 2009, 6, 306–312. [Google Scholar] [CrossRef]
- Cai, P.J.; Tang, Y.J.; Wang, Y.T.; Cao, Y.J. Fabrication of polystyrene hollow spheres in W/O/W multiple emulsions. Mater. Chem. Phys. 2010, 124, 10–12. [Google Scholar] [CrossRef]
- Xiong, X.; Zhao, F.; Shi, M.; Yang, H.; Liu, Y. Polymeric microbubbles for ultrasonic molecular imaging and targeted therapeutics. J. Biomater. Sci. Polym. Ed. 2011, 22, 417–422. [Google Scholar] [CrossRef] [PubMed]
- Skinner, E.K. Sonochemical Production of Hollow Polymer Microspheres for Responsive Delivery. Ph.D. Thesis, University of Bath, Bath, UK, 2013. [Google Scholar]
- Jiang, X.; Lin, S.; Rempel, G.L.; Pan, Q. Preparation of Monodisperse Hollow Core Polymer Microspheres via Two-step Dispersion Polymerization. In Proceedings of the 2nd International Conference on Civil, Materials and Environmental Sciences (CMES 2015), London, UK, 13–14 March 2015. [Google Scholar]
- Davis, S.S. Microspheres and Drug Therapy: Pharmaceutical, Immunological, and Medical Aspects; Elsevier: New York, NY, USA, 1984. [Google Scholar]
- Guiot, P.; Couvreur, P. Polymeric Nanoparticles and Microspheres; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Budov, V.V. Hollow glass microspheres. Use, properties, and technology (Review). Glass Ceram. 1994, 51, 230–235. [Google Scholar] [CrossRef]
- Kim, K.K.; Pack, D.W. Microspheres for Drug Delivery. In BioMEMS and Biomedical Nanotechnology; Ferrari, M., Lee, A.P., Lee, L.J., Eds.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Wilcox, D.L.; Berg, M. Microsphere Fabrication and Applications. An Overview. MRS Online Proc. Lib. Arch. 1998, 372, 372. [Google Scholar] [CrossRef]
- Ma, G. Microspheres and Microcapsules in Biotechnology-Design, Preparation and Applications; Pan Stanford Publishing: Singapore, 2013. [Google Scholar]
- Ganesan, P.; Johnson, A.J.D.; Sabapathy, L.; Duraikannu, A. Review on Microsphere. Am. J. Drug Discov. Dev. 2014, 4, 153–179. [Google Scholar] [CrossRef]
- Amos, S.E.; Yalcin, B. Hollow Glass Microspheres for Plastics, Elastomers, and Adhesives Compounds; Elsevier: New York, NY, USA, 2015. [Google Scholar]
- Minhas, A.; Friess, B.; Shirkavand, F.; Hucik, B.; Pena-Bastidas, T.; Ross, B.; Servinski, S.; Angyal, F. Hollow-glass sphere application in drilling fluids: Case study. In Proceedings of the SPE Western Regional Meeting, Garden Grove, CA, USA, 27–30 April 2015. [Google Scholar]
- Ari, T.C.; Akin, S. An experimental study on usage of hollow glass spheres (HGS) for reducing mud density in geothermal drilling. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015; pp. 1–7. [Google Scholar]
- Synnefa, H.; Santamouris, M.; Akbari, H. Estimating the effect of using cool coatings on energy loads and thermal comfort in residential buildings in various climatic conditions. Energy. Build. 2007, 39, 1167–1174. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Liang, J.; Tang, Q.; Chen, Y. Design of thermal insulation energy-saving coatings for exterior wall. Chem. Eng. Trans. 2017, 61, 1207–1212. [Google Scholar]
- Liu, B.; Wang, H.; Qin, Q.-H. Modelling and characterization of effective thermal conductivity of single hollow glass microsphere and its powder. Materials 2018, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yuan, J.; An, Z.G.; Zhang, J.J. Effect of microstructure and physical parameters of hollow glass microsphere on insulation performance. Mater. Lett. 2011, 65, 1992–1994. [Google Scholar] [CrossRef]
- Allen, M.S.; Baumgartner, R.G.; Fesmire, J.E.; Augustynowicz, S.D. Advances in microsphere insulation systems. AIP Conf. Proc. 2004, 710, 619. [Google Scholar]
- Liang, J.Z.; Li, F.H. Measurement of thermal conductivity of hollow glass-bead-filled polypropylene composites. Polym. Test. 2006, 25, 527–531. [Google Scholar] [CrossRef]
- Park, Y.K.; Kim, J.G.; Lee, J.K. Prediction of thermal conductivity of composites with spherical microballoons. Mater. Trans. 2008, 49, 2781. [Google Scholar] [CrossRef]
- Yung, K.C.; Zhu, B.L.; Yue, T.M.; Xie, C.S. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos. Sci. Technol. 2009, 69, 260–264. [Google Scholar] [CrossRef]
- Zhu, B.; Ma, J.; Wang, J.; Wu, J.; Peng, D. Thermal, dielectric and compressive properties of hollow glass microsphere filled epoxy-matrix composites. J Reinf. Plast. Compos. 2012, 31, 1311–1326. [Google Scholar] [CrossRef]
- Hsu, C.C.; Chang, K.C.; Huang, T.C.; Yeh, L.C.; Yeh, W.-T.; Ji, W.-F.; Yeh, J.-M.; Tsai, T.-Y. Preparation and studies on properties of porous epoxy composites containing microscale hollow epoxy spheres. Micropor. Mesopor. Mater. 2014, 198, 15–21. [Google Scholar] [CrossRef]
- Zhang, D.; Li, H.; Qian, H.; Wang, L.; Li, X. Double layer water-borne heat insulation coatings containing hollow glass microspheres (HGMs). Pigment Resin Technol. 2016, 45, 346–353. [Google Scholar] [CrossRef]
- Wong, Y.; Zhong, D.; Song, A.; Hu, Y. TiO2-coated hollow glass microspheres with superhydrophobic and high IR-reflective properties synthesized by a soft-chemistry method. J. Vis. Exp. 2017, 122. [Google Scholar] [CrossRef]
- Chukhlanov, V.Yu.; Sysoev, E.P. Use of hollow glass microspheres in organosilicon syntact foam plastics. Glass Ceram. 2000, 57, 47–48. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, C.; Huang, R.; Gu, X. Effects of hollow microspheres on the thermal insulation of polysiloxane foam. J. Appl. Polym. Sci. 2017, 134. [Google Scholar] [CrossRef]
- Shahidan, S.; Aminuddin, E.; Mohd Noor, K.; Ramzi Hannan, N.I.R.; Saiful Bahari, N.A. Potential of hollow glass microsphere as cement replacement for lightweight foam concrete on thermal insulation performance. In Proceedings of the International Symposium on Civil and Environmental Engineering 2016, Wuhan, China, 20–21 December 2016. [Google Scholar]
- Ye, C.; Wen, X.; Lan, J.-L.; Cai, Z.-Q.; Pi, P.-H.; Xu, S.-P.; Qian, Y. Surface modification of light hollow polymer microspheres and its application in external wall thermal insulation coatings. Pigment Resin Technol. 2016, 45, 45–51. [Google Scholar] [CrossRef]
- Morehouse, D.S., Jr.; Midland, M.; Tetreault, R.J. Expansible Thermoplastic Polymer Particles Containing Volatile Fluid Foaming Agent and Method of Foaming the Same. U.S. Patent 3,615,972, 26 October 1971. [Google Scholar]
- Glorioso, S.Jr.; Burgess, J.H.; Tang, J.; Dimonie, V.L.; Klein, A. Expandable Microspheres for Foam Insulation and Methods. U.S. Patent 8,088,482, 3 January 2012. [Google Scholar]
- Jonsson, M.; Nordin, M.; Malmstrom, M.; Hammer, C. Suspension polymerization of thermally expandable core/shell particles. Polymer 2006, 47, 3315–3324. [Google Scholar] [CrossRef]
- AzkoNobel. Available online: https://expancel.akzonobel.com (accessed on 5 June 2018).
- Kureha. Available online: http://www.kureha.co.jp/en/business/material/microspheres.html (accessed on 5 June 2018).
- Sandin, O.; Nordin, J.; Jonsson, M. Reflective properties of hollow microspheres in cool roof coatings. J. Coat. Technol. Res. 2017, 14, 817–821. [Google Scholar] [CrossRef] [Green Version]
- Zhai, Y.; Ma, Y.; David, S.N.; Zhao, D.; Lou, R.; Tan, G.; Yang, R.; Yin, X. Scalable manufactured randomized glass-polymer hybrid metamaterial for day-time radiative cooling. Science 2017, 355, 1062–1066. [Google Scholar] [CrossRef] [PubMed]
- Catalanotti, S.; Cuomo, V.; Piro, G.; Ruggi, D.; Silvestrini, V.; Troise, G. The radiative cooling of selective surfaces. Sol. Energy 1975, 17, 83–89. [Google Scholar] [CrossRef]
- Michell, D.; Biggs, K.L. Radiation cooling of buildings at night. J. Appl. Energy 1979, 5, 263–275. [Google Scholar] [CrossRef]
- Hossain, M.M.; Gu, M. Radiative cooling: Principles, progress, and potentials. Adv. Sci. 2016, 3, 1500360. [Google Scholar] [CrossRef] [PubMed]
- Wilt, D.M. Pseudomorphic Glass for Space Solar Cells. U.S. Patent 8,974,899, 10 March 2015. [Google Scholar]
- Lin, J.; Ding, H.; Li, Z. Encapsulation Adhesive Film for Solar Cell Module. U.S. Patent 20,160,329,447, 10 November 2016. [Google Scholar]
- Chang, T.-H.; Wu, P.-H.; Chen, S.-H.; Chan, C.-H.; Lee, C.-C.; Chen, C.-C.; Su, Y.-K. Efficiency enhancement in GaAs solar cells using self-assembled microspheres. Opt. Express 2009, 17, 6519–6524. [Google Scholar] [CrossRef] [PubMed]
- Taira, K.; Nakata, J. Catching rays. Nat. Photon. 2010, 4, 602–603. [Google Scholar] [CrossRef]
- O’Hayre, R.; Cha, S.-W.; Prinz, F.B.; Colella, W. Fuel Cell Fundamentals; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Lim, K.L.; Kazemian, H.; Yaakob, Z.; Daud, W.R.W. Solid-state materials and methods for hydrogen storage: A critical review. Chem. Eng. Technol. 2010, 33, 213–226. [Google Scholar] [CrossRef]
- Durbin, D.J.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Shetty, S.; Hall, M. Facile production of optically active hollow glass microspheres for photo-induced outgassing of stored hydrogen. Int. J. Hydrogen Energy 2011, 36, 9694–9701. [Google Scholar] [CrossRef]
- Qi, X.; Gao, C.; Zhang, Z.; Chen, S.; Li, B.; Wei, S. Production and characterization of hollow glass microspheres with high diffusivity for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 1518–1530. [Google Scholar] [CrossRef]
- Dalai, S.; Savithri, V.; Sharma, P. Investigating the effect of cobalt loading on thermal conductivity and hydrogen storage capacity of hollow glass microspheres (HGMs). Mat. Today Proc. 2017, 4, 11608–11616. [Google Scholar] [CrossRef]
- Lipinska-Kalita, K.; Hemmers, O. Hollow Glass Microsphere Candidates for Reversible Hydrogen Storage, Particularly for Vehicular Applications. U.S. Patent 8,663,429, 4 March 2014. [Google Scholar]
- Schmid, G.H.S.; Bauer, J.; Eder, A.; Eisenmenger-Sittner, C. A hybrid hydrolytic hydrogen storage system based on catalyst-coated hollow glass microspheres. Int. J. Energy Res. 2017, 41, 297–314. [Google Scholar] [CrossRef]
- Rapp, D.B.; Shelby, J.E. Photo-induced hydrogen outgassing of glass. J. Non-Cryst. Solids 2004, 349, 254–259. [Google Scholar] [CrossRef]
- Tian, P.; Song, Q.; Pang, H.; Ning, G. Hollow microspherical vanadium pentoxide fabricated via non-hydrothermal route for lithium ion batteries. Mater. Lett. 2018, 227, 13–16. [Google Scholar] [CrossRef]
- Ren, H.; Yu, R.; Wang, J.; Jin, Q.; Yang, M.; Mao, D.; Kisailus, D.; Zhao, H.; Wang, D. Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium Ion batteries. Nano Lett. 2014, 14, 6679–6684. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zheng, W.; Li, X.; He, G. Multishelled NiO hollow microspheres for high-performance supercapacitors with ultrahigh energy density and robust cycle life. Sci. Rep. 2016, 6, 33241. [Google Scholar] [CrossRef] [PubMed]
- Nuckolls, J.; Wood, L.; Thiessen, A.; Zimmerman, G. Laser compression of matter to super-high densities: Thermonuclear (CTR) applications. Nature 1972, 239, 139–142. [Google Scholar] [CrossRef]
- Pfalzner, S. An Introduction to Inertial Confinement Fusion; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Craxton, R.S.; Anderson, K.S.; Boehly, T.R.; Goncharov, V.N.; Harding, D.R.; Knauer, J.P.; McCrory, R.L.; McKenty, P.W.; Meyerhofer, D.D.; Myatt, J.F.; et al. Direct-drive inertial confinement fusion: A review. Phys. Plasmas 2015, 22, 110501. [Google Scholar] [CrossRef] [Green Version]
- Betti, R.; Hurricane, O.A. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435–448. [Google Scholar] [CrossRef]
- Zohuri, B. Inertial Confinement Fusion Driven Thermonuclear Energy; Springer: Berlin, Germany, 2017. [Google Scholar]
- Lewkowicz, I. Spherical hydrogen targets for laser-produced fusion. J. Phys. D Appl. Phys. 1974, 7, L61–L62. [Google Scholar] [CrossRef]
- Solomon, D.E.; Henderson, T.M. Laser fusion targets. J. Phys. D Appl. Phys. 1975, 8, L85–L86. [Google Scholar] [CrossRef]
- Hendricks, C.D.; Rosencwaig, A.; Woerner, R.L.; Koo, J.C.; Dressler, J.L.; Sherohman, J.W.; Weinland, S.L.; Jeffries, M. Fabrication of glass sphere laser fusion targets. J. Nucl. Mater. 1979, 85–86, 107–111. [Google Scholar] [CrossRef]
- Koo, J.; Dressler, J.; Hendricks, C. Low pressure gas filling of laser fusion microspheres. J. Nucl. Mater. 1979, 85–86, 113–115. [Google Scholar] [CrossRef]
- Nogami, M.; Moriya, Y.; Hayakawa, J.; Komiyama, T. Fabrication of hollow glass microspheres for laser fusion targets from metal alkoxides. Rev. Laser Eng. 1980, 8, 793–797. [Google Scholar] [CrossRef]
- Peiffre, D.; Corley, T.; Halpern, G.; Brinker, B. Utilization of polymeric materials in laser fusion target fabrication. Polymer 1981, 22, 450–460. [Google Scholar] [CrossRef]
- Deckman, H.W.; Halpern, G.M.; Dunsmuir, J.G. Method for Filling Hollow Shells with Gas for Use as Laser Fusion Targets. U.S. Patent 4,380,855, 26 April 1983. [Google Scholar]
- Elsholz, W.E. Fabrication of Glass Microspheres with Conducting Surfaces. U.S. Patent 4,459,145, 10 July 1984. [Google Scholar]
- Norimatsu, T.; Kato, Y.; Nakai, S. Target fabrication for laser fusion research in Japan. J. Vac. Sci. Technol. A 1989, 7, 1165. [Google Scholar] [CrossRef]
- McQuillan, B.W.; Nikroo, A.; Steinman, D.A.; Elsner, F.H.; Czechowicz, D.G.; Hoppe, M.L.; Sixtus, M.; Miller, W.J. The PAMS/GDP process for production of ICF target mandrels. Fusion Technol. 1997, 31, 381–384. [Google Scholar] [CrossRef]
- Mishra, K.; Khardekar, R.; Singh, R.; Pant, H.C. Fabrication of polystyrene hollow microspheres as laser fusion targets by optimized density-matched emulsion technique and characterization. Pramana J. Phys. 2002, 59, 113–131. [Google Scholar] [CrossRef]
- Qi, X.; Gao, C.; Zhang, Z.; Chen, S.; Li, B.; Wei, S. Fabrication and characterization of millimeter-sized glass shells for inertial confinement fusion targets. Chem. Eng. Res. Des. 2013, 91, 2497–2508. [Google Scholar] [CrossRef]
- Veselov, A.V.; Drozhin, V.S.; Druzhinin, A.A.; Izgorodin, B.N.; Iiyushechkin, V.M.; Kirillov, G.A.; Komleva, G.V.; Korochkin, A.M.; Medvedev, E.F.; Nikolaev, G.P.; et al. ICF target technology at the Russian federal nuclear center. Fusion Technol. 1995, 28, 1838–1843. [Google Scholar] [CrossRef]
- Wang, T.; Du, K.; He, Z.; He, X. Development of target fabrication for laser-driven inertial confinement fusion at research center of laser fusion. High Power Laser Sci. Eng. 2017, 5, 25–33. [Google Scholar] [CrossRef]
- Rinde, J.A.; Fulton, F.J. Method of Making Foam-Encapsulated Laser Targets. U.S. Patent 4,021,280, 5 March 1977. [Google Scholar]
- Hendricks, C.D. Method for Foam Encapsulating Laser Targets. U.S. Patent 4,034,032, 7 May 1977. [Google Scholar]
- Yaakobi, B.; Skupsky, S.; McCrory, R.L.; Hooper, C.F.; Deckman, H.; Bourke, P.; Soures, J.M. Symmetric laser compression of argon-filled glass shells to densities of 4–6 g/cm3. Phys. Rev. Lett. 1980, 44, 1072–1075. [Google Scholar] [CrossRef]
- Liepins, R.; Campbell, M.; Fries, R. Plastic coatings for laser fusion targets. Progr. Polym. Sci. 1980, 6, 169–186. [Google Scholar] [CrossRef]
- Mishra, K.K.; Khardekar, R.K.; Chouhan, R.; Gupta, R.K. A simple and efficient levitation technique for noncontact coating of inertial confinement fusion targets. Pramana J. Phys. 2000, 55, 919–925. [Google Scholar] [CrossRef]
- Cuneo, M.E.; Vesey, R.A.; Bennett, G.R.; Sinars, D.B.; Stygar, W.A.; Waisman, E.M.; Porter, J.L.; Rambo, P.K.; Smith, I.C.; Lebedev, S.V.; et al. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double-pinch-driven hohlraums. Plasma Phys. Control. Fusion 2006, 48, R1–R35. [Google Scholar] [CrossRef]
- Li, J.; Lindley-Start, J.; Porch, A.; Barrow, D. Continuous and scalable polymer capsule processing for inertial fusion energy target shell fabrication using droplet microfluidics. Sci. Rep. 2017, 7, 6302. [Google Scholar] [CrossRef] [PubMed]
- Goodin, D.T.; Alexander, N.B.; Besenbruch, G.E.; Bozek, A.S.; Brown, L.C.; Carlson, L.C.; Flint, G.W.; Goodman, P.; Kilkenny, J.D.; Maksaereekul, W.; et al. Developing a commercial production process for 500 000 targets per day: A key challenge for inertial fusion energy. Phys. Plasmas 2006, 13, 056305. [Google Scholar] [CrossRef]
- Du, K.; Liu, M.; Wang, T.; He, X.; Wang, Z.; Zhang, J. Recent progress in ICF target fabrication at RCLF. Matter Radiat. Extrem. 2018, 3, 135–144. [Google Scholar] [CrossRef]
- Farnesi, D.; Barucci, A.; Righini, G.C.; Nunzi Conti, G.; Soria, S. Generation of hyper-parametric oscillations in silica microbubbles. Opt. Lett. 2015, 40, 4508–4511. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.; Benson, O. WGM microresonators: Sensing, lasing and fundamental optics with microspheres. Laser Photonics Rev. 2011, 5, 553–570. [Google Scholar] [CrossRef]
- He, L.; Özdemir, Ş.K.; Yang, L. Whispering gallery microcavity lasers. Laser Photonics Rev. 2013, 7, 60–82. [Google Scholar] [CrossRef]
- Sheng, W.; Kim, S.; Lee, J.; Kim, S.-W.; Jensen, K.; Bawendi, M.G. In-situ encapsulation of quantum dots into polymer microspheres. Langmuir 2006, 22, 3782–3790. [Google Scholar] [CrossRef] [PubMed]
- Li, T. Fundamental Tests of Physics with Optically Trapped Microspheres. Ph.D. Thesis, University of Texas, Austin, TX, USA, 2013. [Google Scholar] [Green Version]
- Atiganyanun, S.; Zhou, M.; Abudayyeh, O.K.; Han, S.M.; Han, S.E. Control of randomness in microsphere-based photonic crystals assembled by Langmuir–Blodgett process. Langmuir 2017, 33, 13783–13789. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Liu, L.; Lu, H.; Zhan, P.; Du, W.; Wan, M.; Wang, Z. Ultra-broadband tunable resonant light trapping in a two-dimensional randomly microstructured plasmonic-photonic absorber. Sci. Rep. 2017, 7, 43803. [Google Scholar] [CrossRef] [PubMed]
- Mikhnev, L.V.; Bondarenko, E.A.; Chapura, O.M.; Skomorokhov, A.A.; Kravtsov, A.A. Influence of annealing temperature on optical properties of the photonic-crystal structures obtained by self-organization of colloidal microspheres of polystyrene and silica. Opt. Mater. 2018, 75, 453–458. [Google Scholar] [CrossRef]
- Kim, D.H.; Dudem, B.; Jung, J.W.; Yu, J.S. Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer. ACS Appl. Mater. Interfaces 2018, 10, 13113–13123. [Google Scholar] [CrossRef] [PubMed]
Inventors | US Patent N. | Year | Title |
---|---|---|---|
Veatch, F.; Alford, H.E.; Croft, R.D. | 2,978,339 | 1961 | Method of producing hollow glass spheres h |
Beck, W.R.; O’Brien, D.L. | 3,365,315 | 1968 | Glass bubbles prepared by reheating solid glass particles |
Tung, C.F.; Laird, J.A. | 3,946,130 | 1976 | Transparent glass microspheres and products made therefrom s |
Garnier, P.; Abriou, D.; Coquillon, M. | 4,661,137 | 1987 | Process for producing glass microspheres h |
Block, J.; Lau, J.W.; Rice, R.W.; Colageo, A.J. | 5,176,732 | 1993 | Method for making low sodium hollow glass microspheres |
Arai, K.; Yamada. K.; Hirano H., Satoh M. | 5,849,055 | 1998 | Process for producing inorganic microspheres s,h |
Henderson, T.M.; Wedding D.K. | 6,919,685 | 2001 | Microsphere h |
Yamada, K.; Hirano, H.; Kusaka, M.; Tanaka, M. | 0043996 (Application Publication #) | 2001 | Hollow aluminosilicate glass microspheres and process for their production h |
Kirkland, J.J.; Langlois, T.J.; Wang, O. | 6,482,324 | 2002 | Porous silica microsphere scavengers s |
Tanaka, M.; Hirano, H.; Yamada, K. | 6,531,222 | 2003 | Fine hollow glass sphere and method for preparing the same h |
Lipinska-Kalita, K.E.; Hemmers, O.A. | 8,663,429 | 2014 | Hollow glass microsphere candidates for reversible hydrogen storage, particularly for vehicular applications h |
Properties | Liquid Droplet Method | Dried-Gel Droplet Method | Self-Assembly Method | Micro-Encapsulation Method | Emulsion Polymerization Method | Template Method |
---|---|---|---|---|---|---|
Equipment cost | High | High | Low | Low | Low | Low |
Operation cost | High | High | Low | Low | Low | High |
Micromanipulation | Yes | Yes | Yes | No | No | Yes |
Batch production | Able | Able | Able | Able | Able | Able |
Multiwalled product | No | No | Able | Able | Able | Able |
Microsphere diameter, μm | 500 ÷ 1500 | 500 ÷ 1500 | ≤0.5 | 50 ÷ 700 | ≤20 | ≤5 |
Sphericity, % | ≥97 | ≥99 | ≥99 | ≥99 | ≥99 | ≥99 |
Concentricity, % | ≥90 | ≤90 | ≥99 | ≥98 | ≥98 | ≥99 |
Surface roughness, nm | <200 | <200 | <10 | <300 | <10 | <5 |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Righini, G.C. Glassy Microspheres for Energy Applications. Micromachines 2018, 9, 379. https://doi.org/10.3390/mi9080379
Righini GC. Glassy Microspheres for Energy Applications. Micromachines. 2018; 9(8):379. https://doi.org/10.3390/mi9080379
Chicago/Turabian StyleRighini, Giancarlo C. 2018. "Glassy Microspheres for Energy Applications" Micromachines 9, no. 8: 379. https://doi.org/10.3390/mi9080379
APA StyleRighini, G. C. (2018). Glassy Microspheres for Energy Applications. Micromachines, 9(8), 379. https://doi.org/10.3390/mi9080379