Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML
Abstract
:1. Introduction
2. Hypomethylating Agents between Then and Now
2.1. Historical Development of Hypomethylating Agents in MDS and AML
2.2. Predicting Response and Outcome with HMA Treatment
2.3. Novel Hypomethylating Agents (HMA)
2.3.1. Guadecitabine
2.3.2. Oral Azacytidine
3. Novel Combination Strategies with HMA
3.1. Venetoclax
3.2. Lenalidomide
3.3. Nucleoside Analog Sapacitabine
3.4. Histonedeacetylaseinhibitors (HDACi)
3.5. Isocitrate Dehydrogenase (IDH) Inhibitors
3.6. Immune Checkpoint Inhibitors (ICI)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ferrara, F. Guadecitabine: A new therapeutic option for acute myeloid leukaemia? Lancet Oncol. 2017, 18, 1287–1288. [Google Scholar] [CrossRef]
- Podoltsev, N.A.; Stahl, M.; Zeidan, A.M.; Gore, S.D. Selecting initial treatment of acute myeloid leukaemia in older adults. Blood Rev. 2017, 31, 43–62. [Google Scholar] [CrossRef] [PubMed]
- Burgstaller, S.; Wiesinger, P.; Stauder, R. Myelodysplastic Syndromes in the Elderly: Treatment Options and Personalized Management. Drugs Aging 2015, 32, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Mosna, F.; Papayannidis, C.; Martinelli, G.; Di Bona, E.; Bonalumi, A.; Tecchio, C.; Candoni, A.; Capelli, D.; Piccin, A.; Forghieri, F.; et al. Complex karyotype, older age, and reduced first-line dose intensity determine poor survival in core binding factor acute myeloid leukemia patients with long-term follow-up. Am. J. Hematol. 2015, 90, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Kayser, S.; Dohner, K.; Krauter, J.; Kohne, C.H.; Horst, H.A.; Held, G.; von Lilienfeld-Toal, M.; Wilhelm, S.; Kundgen, A.; Gotze, K.; et al. The impact of therapy-related acute myeloid leukemia (AML) on outcome in 2853 adult patients with newly diagnosed AML. Blood 2011, 117, 2137–2145. [Google Scholar] [CrossRef] [PubMed]
- Dombret, H.; Itzykson, R. How and when to decide between epigenetic therapy and chemotherapy in patients with AML. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 45–53. [Google Scholar]
- Quintas-Cardama, A.; Ravandi, F.; Liu-Dumlao, T.; Brandt, M.; Faderl, S.; Pierce, S.; Borthakur, G.; Garcia-Manero, G.; Cortes, J.; Kantarjian, H. Epigenetic therapy is associated with similar survival compared with intensive chemotherapy in older patients with newly diagnosed acute myeloid leukemia. Blood 2012, 120, 4840–4845. [Google Scholar] [CrossRef] [PubMed]
- Taskesen, E.; Havermans, M.; van Lom, K.; Sanders, M.A.; van Norden, Y.; Bindels, E.; Hoogenboezem, R.; Reinders, M.J.T.; Figueroa, M.E.; Valk, P.J.M.; et al. Two splice-factor mutant leukemia subgroups uncovered at the boundaries of MDS and AML using combined gene expression and DNA-methylation profiling. Blood 2014, 123, 3327–3335. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, R.C.; Mar, B.G.; Mazzola, E.; Grauman, P.V.; Shareef, S.; Allen, S.L.; Pigneux, A.; Wetzler, M.; Stuart, R.K.; Erba, H.P.; et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood 2015, 125, 1367–1376. [Google Scholar] [CrossRef] [PubMed]
- Hills, R.K. The contribution of randomized trials to the cure of haematological disorders from Bradford Hill onwards. Br. J. Haematol. 2012, 158, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Burnett, A.K. Treatment of acute myeloid leukemia: Are we making progress? Hematol. Am. Soc. Hematol. Educ. Program 2012, 2012, 1–6. [Google Scholar]
- Bertoli, S.; Tavitian, S.; Huynh, A.; Borel, C.; Guenounou, S.; Luquet, I.; Delabesse, E.; Sarry, A.; Laurent, G.; Attal, M. Improved outcome for AML patients over the years 2000–2014. Blood Cancer J. 2017, 7, 635. [Google Scholar] [CrossRef] [PubMed]
- Majhail, N.S.; Brazauskas, R.; Hassebroek, A.; Bredeson, C.N.; Hahn, T.; Hale, G.A.; Horowitz, M.M.; Lazarus, H.M.; Maziarz, R.T.; Wood, W.A.; et al. Outcomes of allogeneic hematopoietic cell transplantation for adolescent and young adults compared with children and older adults with acute myeloid leukemia. Biol. Blood Marrow Transplant. 2012, 18, 861–873. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Mufti, G.J.; Hellstrom-Lindberg, E.; Santini, V.; Finelli, C.; Giagounidis, A.; Schoch, R.; Gattermann, N.; Sanz, G.; List, A.; et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: A randomised, open-label, phase III study. Lancet Oncol. 2009, 10, 223–232. [Google Scholar] [CrossRef]
- Dombret, H.; Seymour, J.F.; Butrym, A.; Wierzbowska, A.; Selleslag, D.; Jang, J.H.; Kumar, R.; Cavenagh, J.; Schuh, A.C.; Candoni, A.; et al. International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood 2015, 126, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Silverman, L.R.; Holland, J.F.; Weinberg, R.S.; Alter, B.P.; Davis, R.B.; Ellison, R.R.; Demakos, E.P.; Cornell, C.J., Jr.; Carey, R.W.; Schiffer, C.; et al. Effects of treatment with 5-azacytidine on the in vivo and in vitro hematopoiesis in patients with myelodysplastic syndromes. Leukemia 1993, 7, 21–29. [Google Scholar] [PubMed]
- Lubbert, M.; Suciu, S.; Baila, L.; Ruter, B.H.; Platzbecker, U.; Giagounidis, A.; Selleslag, D.; Labar, B.; Germing, U.; Salih, H.R.; et al. Low-dose decitabine versus best supportive care in elderly patients with intermediate- or high-risk myelodysplastic syndrome (MDS) ineligible for intensive chemotherapy: Final results of the randomized phase III study of the European Organisation for Research and Treatment of Cancer Leukemia Group and the German MDS Study Group. J. Clin. Oncol. 2011, 29, 1987–1996. [Google Scholar] [PubMed]
- Sanna, A.; Gozzini, A.; Sassolini, F.; Bosi, A.; Santini, V. Decitabine Treatment in Higher Risk MDS, CMML and AML Post-MDS Who Failed Azacitidine. Blood 2011, 118, 5052. [Google Scholar]
- Kantarjian, H.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Mazur, G.; Mayer, J.; Gau, J.P.; Chou, W.C.; Buckstein, R.; Cermak, J.; et al. Multicenter, randomized, open-label, phase III trial of decitabine versus patient choice, with physician advice, of either supportive care or low-dose cytarabine for the treatment of older patients with newly diagnosed acute myeloid leukemia. J. Clin. Oncol. 2012, 30, 2670–2677. [Google Scholar] [CrossRef] [PubMed]
- Kadia, T.M.; Thomas, X.G.; Dmoszynska, A.; Wierzbowska, A.; Minden, M.; Arthur, C.; Delaunay, J.; Ravandi, F.; Kantarjian, H. Decitabine improves outcomes in older patients with acute myeloid leukemia and higher blast counts. Am. J. Hematol. 2015, 90, E139–E141. [Google Scholar] [CrossRef] [PubMed]
- Itzykson, R.; Thepot, S.; Quesnel, B.; Dreyfus, F.; Beyne-Rauzy, O.; Turlure, P.; Vey, N.; Recher, C.; Dartigeas, C.; Legros, L.; et al. Prognostic factors for response and overall survival in 282 patients with higher-risk myelodysplastic syndromes treated with azacitidine. Blood 2011, 117, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.; Thepot, S.; Pleyer, L.; Maurillo, L.; Itzykson, R.; Bargay, J.; Stauder, R.; Venditti, A.; Seegers, V.; Martinez-Robles, V.; et al. Azacitidine frontline therapy for unfit acute myeloid leukemia patients: Clinical use and outcome prediction. Leuk. Res. 2015, 39, 296–306. [Google Scholar] [CrossRef] [PubMed]
- Bories, P.; Bertoli, S.; Berard, E.; Laurent, J.; Duchayne, E.; Sarry, A.; Delabesse, E.; Beyne-Rauzy, O.; Huguet, F.; Recher, C. Intensive chemotherapy, azacitidine, or supportive care in older acute myeloid leukemia patients: An analysis from a regional healthcare network. Am. J. Hematol. 2014, 89, E244–E252. [Google Scholar] [CrossRef] [PubMed]
- Itzykson, R.; Kosmider, O.; Cluzeau, T.; Mansat-De Mas, V.; Dreyfus, F.; Beyne-Rauzy, O.; Quesnel, B.; Vey, N.; Gelsi-Boyer, V.; Raynaud, S.; et al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 2011, 25, 1147–1152. [Google Scholar] [CrossRef] [PubMed]
- Bejar, R.; Lord, A.; Stevenson, K.; Bar-Natan, M.; Perez-Ladaga, A.; Zaneveld, J.; Wang, H.; Caughey, B.; Stojanov, P.; Getz, G.; et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 2014, 124, 2705–2712. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C.F.; Houlton, A.E.; Quek, L.S.; Ferguson, P.; Gbandi, E.; Roberts, C.; Metzner, M.; Garcia-Martin, N.; Kennedy, A.; Hamblin, A.; et al. Outcome of Azacitidine Therapy in Acute Myeloid Leukemia Is not Improved by Concurrent Vorinostat Therapy but Is Predicted by a Diagnostic Molecular Signature. Clin. Cancer Res. 2017, 23, 6430–6440. [Google Scholar] [CrossRef] [PubMed]
- Welch, J.S.; Petti, A.A.; Miller, C.A.; Fronick, C.C.; O’Laughlin, M.; Fulton, R.S.; Wilson, R.K.; Baty, J.D.; Duncavage, E.J.; Tandon, B.; et al. TP53 and Decitabine in Acute Myeloid Leukemia and Myelodysplastic Syndromes. N. Engl. J. Med. 2016, 375, 2023–2036. [Google Scholar] [CrossRef] [PubMed]
- Bally, C.; Ades, L.; Renneville, A.; Sebert, M.; Eclache, V.; Preudhomme, C.; Mozziconacci, M.J.; de The, H.; Lehmann-Che, J.; Fenaux, P. Prognostic value of TP53 gene mutations in myelodysplastic syndromes and acute myeloid leukemia treated with azacitidine. Leuk. Res. 2014, 38, 751–755. [Google Scholar] [CrossRef] [PubMed]
- Montalban-Bravo, G.; Takahashi, K.; Garcia-Manero, G. Decitabine in TP53-Mutated AML. N. Engl. J. Med. 2017, 376, 796–797. [Google Scholar] [PubMed]
- Zeidan, A.M.; Davidoff, A.J.; Long, J.B.; Hu, X.; Wang, R.; Ma, X.; Gross, C.P.; Abel, G.A.; Huntington, S.F.; Podoltsev, N.A.; et al. Comparative clinical effectiveness of azacitidine versus decitabine in older patients with myelodysplastic syndromes. Br. J. Haematol. 2016, 175, 829–840. [Google Scholar] [CrossRef] [PubMed]
- Roboz, G.J.; Kantarjian, H.M.; Yee, K.W.L.; Kropf, P.L.; O’Connell, C.L.; Griffiths, E.A.; Stock, W.; Daver, N.G.; Jabbour, E.; Ritchie, E.K.; et al. Dose, schedule, safety, and efficacy of guadecitabine in relapsed or refractory acute myeloid leukemia. Cancer 2017. [Google Scholar] [CrossRef] [PubMed]
- Perl, A.E. The role of targeted therapy in the management of patients with AML. Hematol. Am. Soc. Hematol. Educ. Program 2017, 2017, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Kropf, P.; Jabbour, E.; Yee, K.; O’Connell, C.; Tibes, R.; Roboz, G.J.; Walsh, K.; Podoltsev, N.A.; Savona, M.; Issa, J.P.; et al. Late responses and overall survival (OS) from long term follow up of a randomized phase 2 study of SGI-110 (guadecitabine) 5-day regimen in elderly AML who are not eligible for intensive chemotherapy. In Proceedings of the 20th Congress of the European Hematology Association, Vienna, Austria, 11–14 June 2015. [Google Scholar]
- Matulonis, U.A.; Oza, A.M.; Secord, A.A.; Roman, L.D.; Blagden, S.P.; Banerjee, S.N.; Elkas, J.C.; Nemunaitis, J.J.; Ghamande, S.A.; Fleming, G.F.; et al. Epigenetic resensitization to platinum in recurrent, platinum-resistant ovarian cancer (OC) using guadecitabine (SGI-110), a novel hypomethylating agent (HMA): Results of a randomized phase II study. J. Clin. Oncol. 2016, 34, 5547. [Google Scholar]
- Platzbecker, U.; Aul, C.; Ehninger, G.; Giagounidis, A. Reduction of 5-azacitidine induced skin reactions in MDS patients with evening primrose oil. Ann. Hematol. 2010, 89, 427–428. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Gore, S.D.; Kambhampati, S.; Scott, B.; Tefferi, A.; Cogle, C.R.; Edenfield, W.J.; Hetzer, J.; Kumar, K.; Laille, E.; et al. Efficacy and safety of extended dosing schedules of CC-486 (oral azacitidine) in patients with lower-risk myelodysplastic syndromes. Leukemia 2016, 30, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Montero, J.; Letai, A. Why do BCL-2 inhibitors work and where should we use them in the clinic? Cell Death Differ. 2018, 25, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.N.; Strasser, A. The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death Differ. 2011, 18, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Lagadinou, E.D.; Sach, A.; Callahan, K.; Rossi, R.M.; Neering, S.J.; Minhajuddin, M.; Ashton, J.M.; Pei, S.; Grose, V.; O’Dwyer, K.M.; et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell 2013, 12, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Menghrajani, K.; Tallman, M.S. New therapeutic strategies for high-risk acute myeloid leukemia. Curr. Opin. Hematol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Konopleva, M.; Pollyea, D.A.; Potluri, J.; Chyla, B.; Hogdal, L.; Busman, T.; McKeegan, E.; Salem, A.H.; Zhu, M.; Ricker, J.L.; et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 2016, 6, 1106–1117. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Pollyea, D.A.; Jonas, B.A.; Konopleva, M.; Pullarkat, V.; Wei, A.; Kantarjian, H.M.; Pigneux, A.; Recher, C.; Seymour, J.F.; et al. Updated Safety and Efficacy of Venetoclax with Decitabine or Azacitidine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia. Blood 2017, 130, 2628. [Google Scholar]
- Wei, A.; Strickland, S.A.; Roboz, G.J.; Hou, J.-Z.; Fiedler, W.; Lin, T.L.; Walter, R.B.; Enjeti, A.; Chyla, B.; Popovic, R.; et al. Phase 1/2 Study of Venetoclax with Low-Dose Cytarabine in Treatment-Naive, Elderly Patients with Acute Myeloid Leukemia Unfit for Intensive Chemotherapy: 1-Year Outcomes. Blood 2017, 130, 890. [Google Scholar]
- DiNardo, C.D.; Rausch, C.R.; Benton, C.; Kadia, T.; Jain, N.; Pemmaraju, N.; Daver, N.; Covert, W.; Marx, K.R.; Mace, M.; et al. Clinical experience with the BCL2-inhibitor venetoclax in combination therapy for relapsed and refractory acute myeloid leukemia and related myeloid malignancies. Am. J. Hematol. 2018, 93, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Dredge, K.; Horsfall, R.; Robinson, S.P.; Zhang, L.H.; Lu, L.; Tang, Y.; Shirley, M.A.; Muller, G.; Schafer, P.; Stirling, D.; et al. Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc. Res. 2005, 69, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Schafer, P.H.; Gandhi, A.K.; Loveland, M.A.; Chen, R.S.; Man, H.W.; Schnetkamp, P.P.; Wolbring, G.; Govinda, S.; Corral, L.G.; Payvandi, F.; et al. Enhancement of cytokine production and AP-1 transcriptional activity in T cells by thalidomide-related immunomodulatory drugs. J. Pharmacol. Exp. Ther. 2003, 305, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Germing, U. Combination of azacitidine and lenalidomide in myelodysplastic syndromes or acute myeloid leukemia—A wise liaison? Leukemia 2013, 27, 1813–1819. [Google Scholar] [CrossRef] [PubMed]
- Kronke, J.; Fink, E.C.; Hollenbach, P.W.; MacBeth, K.J.; Hurst, S.N.; Udeshi, N.D.; Chamberlain, P.P.; Mani, D.R.; Man, H.W.; Gandhi, A.K.; et al. Lenalidomide induces ubiquitination and degradation of CK1alpha in del(5q) MDS. Nature 2015, 523, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Fenaux, P.; Giagounidis, A.; Selleslag, D.; Beyne-Rauzy, O.; Mufti, G.; Mittelman, M.; Muus, P.; Te Boekhorst, P.; Sanz, G.; Del Canizo, C.; et al. A randomized phase 3 study of lenalidomide versus placebo in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with del5q. Blood 2011, 118, 3765–3776. [Google Scholar] [CrossRef] [PubMed]
- Sekeres, M.A.; Gundacker, H.; Lancet, J.; Advani, A.; Petersdorf, S.; Liesveld, J.; Mulford, D.; Norwood, T.; Willman, C.L.; Appelbaum, F.R.; et al. A phase 2 study of lenalidomide monotherapy in patients with deletion 5q acute myeloid leukemia: Southwest Oncology Group Study S0605. Blood 2011, 118, 523–528. [Google Scholar] [CrossRef] [PubMed]
- Fehniger, T.A.; Uy, G.L.; Trinkaus, K.; Nelson, A.D.; Demland, J.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; Westervelt, P.; DiPersio, J.F.; et al. A phase 2 study of high-dose lenalidomide as initial therapy for older patients with acute myeloid leukemia. Blood 2011, 117, 1828–1833. [Google Scholar] [CrossRef] [PubMed]
- Platzbecker, U.; Braulke, F.; Kundgen, A.; Gotze, K.; Bug, G.; Schonefeldt, C.; Shirneshan, K.; Rollig, C.; Bornhauser, M.; Naumann, R.; et al. Sequential combination of azacitidine and lenalidomide in del(5q) higher-risk myelodysplastic syndromes or acute myeloid leukemia: A phase I study. Leukemia 2013, 27, 1403–1407. [Google Scholar] [CrossRef] [PubMed]
- Sekeres, M.A.; Othus, M.; List, A.F.; Odenike, O.; Stone, R.M.; Gore, S.D.; Litzow, M.R.; Buckstein, R.; Fang, M.; Roulston, D.; et al. Randomized Phase II Study of Azacitidine Alone or in Combination With Lenalidomide or With Vorinostat in Higher-Risk Myelodysplastic Syndromes and Chronic Myelomonocytic Leukemia: North American Intergroup Study SWOG S1117. J. Clin. Oncol. 2017, 35, 2745–2753. [Google Scholar] [CrossRef] [PubMed]
- Kenealy, M.; Benson, W.; Stevenson, W.; Eek, R.; Zantomio, D.; Cunningham, I.; Hiwase, D.; Cowan, L.; Vlachos, S.; Zannino, D.; et al. The addition of lenalidomide to azacitidine achieves higher responses but no improvement in twelve month clinical benefit or PFS; main analysis australian ALLG MDS4 trial. Leuk. Res. 2015, 39, S5. [Google Scholar] [CrossRef]
- Ades, L.; Prebet, T.; Stamatoullas, A.; Recher, C.; Guieze, R.; Raffoux, E.; Bouabdallah, K.; Hunault, M.; Wattel, E.; Stalnikiewicz, L.; et al. Lenalidomide combined with intensive chemotherapy in acute myeloid leukemia and higher-risk myelodysplastic syndrome with 5q deletion. Results of a phase II study by the Groupe Francophone Des Myelodysplasies. Haematologica 2017, 102, 728–735. [Google Scholar] [CrossRef] [PubMed]
- Ravandi, F.; Kadia, T.M.; Borthakur, G.; Wierda, W.G.; Goldberg, S.L.; Wetzler, M.; Venugopal, P.; Seiter, K.; Chiao, J.; Kantarjian, H.M. Pooled Analysis of Elderly Patients with Newly Diagnosed AML Treated with Sapacitabine and Decitabine Administered in Alternating Cycles. Blood 2012, 120, 2630. [Google Scholar]
- Lim, M.Y.; Jamieson, K. Profile of sapacitabine: Potential for the treatment of newly diagnosed acute myeloid leukemia in elderly patients. Clin. Interv. Aging 2014, 9, 753–762. [Google Scholar] [PubMed]
- Kantarjian, H.M.; Begna, K.H.; Altman, J.K.; Goldberg, S.L.; Sekeres, M.A.; Strickland, S.A.; Rubenstein, S.E.; Arellano, M.L.; Claxton, D.F.; Baer, M.R.; et al. Results of a Phase 3 Study of Elderly Patients with Newly Diagnosed AML Treated with Sapacitabine and Decitabine Administered in Alternating Cycles. Blood 2017, 130, 891. [Google Scholar]
- Stahl, M.; Gore, S.D.; Vey, N.; Prebet, T. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Exp. Opin. Investig. Drugs 2016, 25, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, E.W.; Loaiza-Bonilla, A.; Juckett, M.; DiPersio, J.F.; Roy, V.; Slack, J.; Wu, W.; Laumann, K.; Espinoza-Delgado, I.; Gore, S.D.; et al. A phase 2 study of vorinostat in acute myeloid leukemia. Haematologica 2009, 94, 1375–1382. [Google Scholar] [CrossRef] [PubMed]
- Prebet, T.; Sun, Z.; Figueroa, M.E.; Ketterling, R.; Melnick, A.; Greenberg, P.L.; Herman, J.; Juckett, M.; Smith, M.R.; Malick, L.; et al. Prolonged administration of azacitidine with or without entinostat for myelodysplastic syndrome and acute myeloid leukemia with myelodysplasia-related changes: Results of the US Leukemia Intergroup trial E1905. J. Clin. Oncol. 2014, 32, 1242–1248. [Google Scholar] [CrossRef] [PubMed]
- Prebet, T.; Sun, Z.; Ketterling, R.P.; Zeidan, A.; Greenberg, P.; Herman, J.; Juckett, M.; Smith, M.R.; Malick, L.; Paietta, E.; et al. Azacitidine with or without Entinostat for the treatment of therapy-related myeloid neoplasm: Further results of the E1905 North American Leukemia Intergroup study. Br. J. Haematol. 2016, 172, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Zeidan, A.M. Hypomethylating agents in combination with histone deacetylase inhibitors in higher risk myelodysplastic syndromes: Is there a light at the end of the tunnel? Cancer 2017, 123, 911–914. [Google Scholar] [CrossRef] [PubMed]
- Craddock, C.; Houlton, A.E.; Ferguson, P.; Raghavan, M.; Fox, S.; Dudley, L.; Quek, L.S.; Cavenagh, J.D.; Dennis, M.; McMullin, M.F.; et al. Vorinostat Does Not Improve Outcome in Patients with Acute Myeloid Leukemia and High Risk Myelodysplasia Treated with Azacitidine: Results of the UK Trials Acceleration Programme Ravva Trial. Blood 2016, 128, 1065. [Google Scholar]
- Garcia-Manero, G.; Atallah, E.; Khaled, S.K.; Arellano, M.; Patnaik, M.M.; Butler, T.A.; Ashby, C.; Medeiros, B.C. Final Results from a Phase 2 Study of Pracinostat in Combination with Azacitidine in Elderly Patients with Acute Myeloid Leukemia (AML). Blood 2015, 126, 453. [Google Scholar]
- Schuh, A.C.; Dohner, H.; Pleyer, L.; Seymour, J.F.; Fenaux, P.; Dombret, H. Azacitidine in adult patients with acute myeloid leukemia. Crit. Rev. Oncol. Hematol. 2017, 116, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Manero, G.; Montalban-Bravo, G.; Berdeja, J.G.; Abaza, Y.; Jabbour, E.; Essell, J.; Lyons, R.M.; Ravandi, F.; Maris, M.; Heller, B.; et al. Phase 2, randomized, double-blind study of pracinostat in combination with azacitidine in patients with untreated, higher-risk myelodysplastic syndromes. Cancer 2017, 123, 994–1002. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Hu, C.; Yu, M.; Chen, F.; Ye, L.; Yin, X.; Zhuang, Z.; Tong, H. Prognostic value of isocitrate dehydrogenase mutations in myelodysplastic syndromes: A retrospective cohort study and meta-analysis. PLoS ONE 2014, 9, e100206. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, M.E.; Abdel-Wahab, O.; Lu, C.; Ward, P.S.; Patel, J.; Shih, A.; Li, Y.; Bhagwat, N.; Vasanthakumar, A.; Fernandez, H.F.; et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 2010, 18, 553–567. [Google Scholar] [CrossRef] [PubMed]
- McKerrell, T.; Park, N.; Moreno, T.; Grove, C.S.; Ponstingl, H.; Stephens, J.; Understanding Society Scientific Group; Crawley, C.; Craig, J.; Scott, M.A.; et al. Leukemia-associated somatic mutations drive distinct patterns of age-related clonal hemopoiesis. Cell Rep. 2015, 10, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Ball, B.; Zeidan, A.; Gore, S.D.; Prebet, T. Hypomethylating agent combination strategies in myelodysplastic syndromes: Hopes and shortcomings. Leuk. Lymphoma 2017, 58, 1022–1036. [Google Scholar] [CrossRef] [PubMed]
- Stein, E.M.; DiNardo, C.D.; Pollyea, D.A.; Fathi, A.T.; Roboz, G.J.; Altman, J.K.; Stone, R.M.; DeAngelo, D.J.; Levine, R.L.; Flinn, I.W.; et al. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood 2017, 130, 722–731. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; de Botton, S.; Stein, E.M.; Roboz, G.J.; Swords, R.T.; Pollyea, D.A.; Fathi, A.T.; Collins, R.; Altman, J.K.; Flinn, I.W.; et al. Determination of IDH1 Mutational Burden and Clearance Via Next-Generation Sequencing in Patients with IDH1 Mutation-Positive Hematologic Malignancies Receiving AG-120, a First-in-Class Inhibitor of Mutant IDH1. Blood 2016, 128, 1070. [Google Scholar]
- Fathi, A.T.; DiNardo, C.D.; Kline, I.; Kenvin, L.; Gupta, I.; Attar, E.C.; Stein, E.M.; de Botton, S.; Investigators, A.C.S. Differentiation Syndrome Associated With Enasidenib, a Selective Inhibitor of Mutant Isocitrate Dehydrogenase 2: Analysis of a Phase 1/2 Study. JAMA Oncol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Hu-Lieskovan, S.; Wargo, J.A.; Ribas, A. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017, 168, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Boddu, P.; Kantarjian, H.; Garcia-Manero, G.; Allison, J.; Sharma, P.; Daver, N. The emerging role of immune checkpoint based approaches in AML and MDS. Leuk. Lymphoma 2017, 59, 790–802. [Google Scholar] [CrossRef] [PubMed]
- Kubasch, A.S.; Bazzurri, S.; Tunger, A.; Stasik, S.; Garzarolli, M.; Meinel, J.; Baretton, G.; Meier, F.; Thiede, C.; Schmitz, M.; et al. Clinical, molecular and immunological responses to pembrolizumab treatment for synchronous melanoma and acute myeloid leukemia. Blood Adv. 2018, in press. [Google Scholar]
- Jenkins, R.W.; Barbie, D.A.; Flaherty, K.T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 2018, 118, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Boddu, P.; Garcia-Manero, G.; Yadav, S.S.; Sharma, P.; Allison, J.; Kantarjian, H. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia 2018. [Google Scholar] [CrossRef] [PubMed]
- Daver, N.; Kontoyiannis, D.P. Checkpoint inhibitors and aspergillosis in AML: The double hit hypothesis. Lancet Oncol. 2017, 18, 1571–1573. [Google Scholar] [CrossRef]
- Garcia-Manero, G.; Sekeres, M.A.; Egyed, M.; Breccia, M.; Graux, C.; Cavenagh, J.D.; Salman, H.; Illes, A.; Fenaux, P.; DeAngelo, D.J.; et al. A phase 1b/2b multicenter study of oral panobinostat plus azacitidine in adults with MDS, CMML or AML with 30% blasts. Leukemia 2017, 31, 2799–2806. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Arellano, M.; Frattini, M.G.; Kantarjian, H.; Popovic, R.; et al. Safety and preliminary efficacy of venetoclax with decitabine or azacitidine in elderly patients with previously untreated acute myeloid leukaemia: A non-randomised, open-label, phase 1b study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Ravandi, F.; Alattar, M.L.; Grunwald, M.R.; Rudek, M.A.; Rajkhowa, T.; Richie, M.A.; Pierce, S.; Daver, N.; Garcia-Manero, G.; Faderl, S.; et al. Phase 2 study of azacytidine plus sorafenib in patients with acute myeloid leukemia and FLT-3 internal tandem duplication mutation. Blood 2013, 121, 4655–4662. [Google Scholar] [CrossRef] [PubMed]
- Cooper, B.W.; Kindwall-Keller, T.L.; Craig, M.D.; Creger, R.J.; Hamadani, M.; Tse, W.W.; Lazarus, H.M. A phase I study of midostaurin and azacitidine in relapsed and elderly AML patients. Clin. Lymphoma Myeloma Leuk. 2015, 15, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, M.; Kantarjian, H.; Daver, N.; Borthakur, G.; Ohanian, M.; Kadia, T.; DiNardo, C.; Jain, N.; Estrov, Z.; Ferrajoli, A.; et al. The Combination of Quizartinib with Azacitidine or Low Dose Cytarabine is Highly Active in Patients (Pts) with FLT3-ITD Mutated Myeloid Leukemias: Interim Report of a Phase I/II Trial. Clin. Lymphoma Myeloma Leuk. 2017, 17, S3. [Google Scholar] [CrossRef]
- Ravandi, F.; Faderl, S.; Cortes, J.E.; Garcia-Manero, G.; Jabbour, E.; Boone, P.A.; Kadia, T.; Borthakur, G.; Wierda, W.G.; Wetzler, M.; et al. Phase 1/2 Study of Sapacitabine and Decitabine Administered Sequentially in Elderly Patients with Newly Diagnosed AML. Blood 2011, 118, 3630. [Google Scholar]
- Navada, S.C.; Fruchtman, S.M.; Odchimar-Reissig, R.; Demakos, E.P.; Petrone, M.E.; Zbyszewski, P.S.; Holland, J.F.; Silverman, L.R. A phase 1/2 study of rigosertib in patients with myelodysplastic syndromes (MDS) and MDS progressed to acute myeloid leukemia. Leuk. Res. 2018, 64, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, C.D.; Stein, A.S.; Fathi, A.T.; Montesinos, P.; Odenike, O.; Kantarjian, H.M.; Stone, R.M.; Koralek, D.O.; Van Oostendorp, J.; Gong, J.; et al. Mutant isocitrate dehydrogenase (mIDH) inhibitors, enasidenib or ivosidenib, in combination with azacitidine (AZA): Preliminary results of a phase 1b/2 study in patients with newly diagnosed acute myeloid leukemia (AML). Blood 2017, 130, 639. [Google Scholar]
- Savona, M.R.; Pollyea, D.A.; Stock, W.; Oehler, V.G.; Schroeder, M.A.; Lancet, J.; McCloskey, J.; Kantarjian, H.M.; Ma, W.W.; Shaik, M.N.; et al. Phase Ib Study of Glasdegib, a Hedgehog Pathway Inhibitor, in Combination with Standard Chemotherapy in Patients with AML or High-Risk MDS. Clin. Cancer Res. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lancet, J.E.; Uy, G.L.; Cortes, J.E.; Newell, L.F.; Lin, T.L.; Ritchie, E.K.; Stuart, R.K.; Strickland, S.A.; Hogge, D.; Solomon, S.R.; et al. Final results of a phase III randomized trial of CPX-351 versus 7+3 in older patients with newly diagnosed high risk (secondary) AML. J. Clin. Oncol. 2016, 34, 7000. [Google Scholar]
Agent | Trial Status | MDS/AML Subttyp | Efficacy |
---|---|---|---|
HDACi + HMA | |||
Vorinostat + AZA vs. AZA monotherapy | Phase II NCT00948064 | Previously untreated AML or high-risk MDS | 35% CR Vorinostat + AZA 44% CR AZA monotherapy Sekeres et al. 2017 [53] |
Pracinostat + AZA | Phase II NCT01912274 | Newly diagnosed AML | 21% CR Garcia-Manero et al. 2017 [65] |
Panobinostat + AZA | Phase I/IIb ACTRN12610000924055 | Previously untreated AML or high-risk MDS | 27.5% CR Garcia-Manero et al. 2017 [81] |
BCL-2 inhibitor + HMA | |||
Venetoclax + AZA or DAC | Phase IB NCT02203773 | Elderly, previously untreated AML | 28% CR AZA + VEN 44% CR DAC + VEN DiNardo et al. 2018 [82] |
FLT3 inhibitors + HMA | |||
Sorafenib + AZA | Phase II NCT01254890 | Relapsed/refractory AML | 16% CR Ravandi et al. 2013 [83] |
Midostaurin + AZA | Phase I/II NCT01093573 | Untreated or relapsed/refractory AML or high-risk MDS | 18% CR Cooper et al. 2015 [84] |
Quizartinib + LDAC/AZA | Phase I/II NCT01892371 | Newly diagnosed/untreated or relapsed/refractory AML or high-risk MDS; FLT3-ITD positive | 16,9% CR Swaminathan et al. 2017 [85] |
Cytotoxic Agents + HMA | |||
Sapacitabine + DAC | Phase I/II NCT01211457 | Newly diagnosed AML patients ≥70 years | 16% CR Ravandi et al. 2011 [86] |
Cell Cyle Inhibitors + HMA | |||
Rigosertib + AZA | Phase I/II NCT01926587 | AML or high-risk MDS previously untreated or failed HMA | 65% mCR Navada et al. 2017 [87] |
Isocitrate Dehydrogenase Inhibitors + HMA | |||
Enasidenib or Ivosedinib + AZA | Phase I/II NCT02677922 | Newly diagnosed, IDH1 or IDH2 mutation-positive AML | 33% CR Enasidenib + AZA 42% CR Ivosidenib + AZA DiNardo et al. 2017 [88] |
Checkpoint Inhibitors + HMA | |||
Ipilimumab/Nivolumab + AZA | Phase II NCT02530463 | Frontline MDS, Relapsed/Refractory MDS | ongoing |
Nivolumab + AZA | Phase II NCT02397720 | Relapsed/Refractory AML >18 years, de novo AML ≥ 65 years | ongoing |
Pembrolizumab + AZA | Phase II NCT02845297 | Frontline AML ≥ 65 years, Relapsed/Refractory AML | ongoing |
Durvalumab + AZA | Phase II NCT02775903 | Frontline MDS, Frontline AML ≥ 65 years | ongoing |
Atezolizumab + AZA | Phase I NCT02508870 | Post-HMA failure MDS: Atezolizumab monotherapy vs. Atezolizumab + AZA Frontline MDS: Atezolizumab + AZA | ongoing |
Hedgehog Pathway Inhibitor + Standard Chemotherapy | |||
Glasdegib + LDAC or DAC or cytarabine/daunorubicin | Phase Ib NCT01546038 | Newly diagnosed AML or high-risk MDS | 31% Cri Savona et al. 2018 [89] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kubasch, A.S.; Platzbecker, U. Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML. Cancers 2018, 10, 158. https://doi.org/10.3390/cancers10060158
Kubasch AS, Platzbecker U. Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML. Cancers. 2018; 10(6):158. https://doi.org/10.3390/cancers10060158
Chicago/Turabian StyleKubasch, Anne Sophie, and Uwe Platzbecker. 2018. "Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML" Cancers 10, no. 6: 158. https://doi.org/10.3390/cancers10060158
APA StyleKubasch, A. S., & Platzbecker, U. (2018). Beyond the Edge of Hypomethylating Agents: Novel Combination Strategies for Older Adults with Advanced MDS and AML. Cancers, 10(6), 158. https://doi.org/10.3390/cancers10060158